Metformin sensitizes triple-negative breast cancer to histone deacetylase inhibitors by targeting FGFR4.

IF 9 2区 医学 Q1 CELL BIOLOGY
Zhangyuan Gu, Fugui Ye, Hong Luo, Xiaoguang Li, Yue Gong, Shiqi Mao, Xiaoqing Jia, Xiangchen Han, Boyue Han, Yun Fu, Xiaolin Cheng, Jiejing Li, Zhiming Shao, Peizhen Wen, Xin Hu, Zhigang Zhuang
{"title":"Metformin sensitizes triple-negative breast cancer to histone deacetylase inhibitors by targeting FGFR4.","authors":"Zhangyuan Gu, Fugui Ye, Hong Luo, Xiaoguang Li, Yue Gong, Shiqi Mao, Xiaoqing Jia, Xiangchen Han, Boyue Han, Yun Fu, Xiaolin Cheng, Jiejing Li, Zhiming Shao, Peizhen Wen, Xin Hu, Zhigang Zhuang","doi":"10.1186/s12929-025-01129-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is characterized by high malignancy, strong invasiveness, and a propensity for distant metastasis, leading to poor prognosis and relatively limited treatment options. Metformin, as a first-line oral hypoglycemic agent, has garnered widespread research interest in recent years due to its potential in cancer prevention and treatment. However, its efficacy varies significantly across different tumor types. Histone deacetylase inhibitors (HDACi), such as SAHA, have demonstrated antitumor activity, but TNBC responds poorly to HDACi monotherapy, possibly due to feedback activation of the JAK-STAT pathway. Exploring the synergistic potential and underlying mechanisms of combining metformin with HDACi in TNBC treatment is crucial.</p><p><strong>Methods: </strong>We predicted the synergistic effects of metformin and SAHA in TNBC using multiple computational methods (CMap, DTsyn, and DrugComb). We also developed a cancer-specific compound mimic library (CDTSL) and applied a three-step strategy to identify genes fitting the \"metformin sensitization\" model. Subsequently, we evaluated the synergistic effects of metformin and SAHA in TNBC cell lines through cell proliferation, colony formation, and apoptosis assays. Furthermore, we investigated the molecular mechanisms of the combined treatment using techniques such as transcriptome sequencing, chromatin immunoprecipitation (ChIP), Western blotting, and measurement of extracellular acidification rate (ECAR). Additionally, we assessed the in vivo antitumor effects of the combined therapy in a nude mouse subcutaneous xenograft model.</p><p><strong>Results: </strong>CMap, DTsyn, and DrugComb all predicted the synergistic effects of SAHA and metformin in TNBC. The screening results revealed that HDAC10 played a key role in metformin sensitization. We found that the combination of metformin and SAHA exhibited synergistic antitumor effects (combination index CI < 0.9) in TNBC cell lines. Mechanistically, metformin inhibited histone acetylation on FGFR4, thereby blocking the feedback activation of FGFR4 downstream pathways induced by SAHA. Furthermore, metformin interfered with the glycolysis process induced by SAHA, altering the metabolic reprogramming of tumor cells. In in vivo experiments, the combined treatment of metformin and SAHA significantly inhibited the growth of subcutaneous tumors in nude mice.</p><p><strong>Conclusions: </strong>Metformin enhances the sensitivity of TNBC to HDAC inhibitors by blocking the FGFR4 pathway and interfering with metabolic reprogramming. When used in combination with SAHA, metformin exhibits synergistic antitumor effects. Our study provides a theoretical basis for the combined application of HDAC inhibitors and metformin, potentially offering a new strategy for the treatment of TNBC.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"36"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-025-01129-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Triple-negative breast cancer (TNBC) is characterized by high malignancy, strong invasiveness, and a propensity for distant metastasis, leading to poor prognosis and relatively limited treatment options. Metformin, as a first-line oral hypoglycemic agent, has garnered widespread research interest in recent years due to its potential in cancer prevention and treatment. However, its efficacy varies significantly across different tumor types. Histone deacetylase inhibitors (HDACi), such as SAHA, have demonstrated antitumor activity, but TNBC responds poorly to HDACi monotherapy, possibly due to feedback activation of the JAK-STAT pathway. Exploring the synergistic potential and underlying mechanisms of combining metformin with HDACi in TNBC treatment is crucial.

Methods: We predicted the synergistic effects of metformin and SAHA in TNBC using multiple computational methods (CMap, DTsyn, and DrugComb). We also developed a cancer-specific compound mimic library (CDTSL) and applied a three-step strategy to identify genes fitting the "metformin sensitization" model. Subsequently, we evaluated the synergistic effects of metformin and SAHA in TNBC cell lines through cell proliferation, colony formation, and apoptosis assays. Furthermore, we investigated the molecular mechanisms of the combined treatment using techniques such as transcriptome sequencing, chromatin immunoprecipitation (ChIP), Western blotting, and measurement of extracellular acidification rate (ECAR). Additionally, we assessed the in vivo antitumor effects of the combined therapy in a nude mouse subcutaneous xenograft model.

Results: CMap, DTsyn, and DrugComb all predicted the synergistic effects of SAHA and metformin in TNBC. The screening results revealed that HDAC10 played a key role in metformin sensitization. We found that the combination of metformin and SAHA exhibited synergistic antitumor effects (combination index CI < 0.9) in TNBC cell lines. Mechanistically, metformin inhibited histone acetylation on FGFR4, thereby blocking the feedback activation of FGFR4 downstream pathways induced by SAHA. Furthermore, metformin interfered with the glycolysis process induced by SAHA, altering the metabolic reprogramming of tumor cells. In in vivo experiments, the combined treatment of metformin and SAHA significantly inhibited the growth of subcutaneous tumors in nude mice.

Conclusions: Metformin enhances the sensitivity of TNBC to HDAC inhibitors by blocking the FGFR4 pathway and interfering with metabolic reprogramming. When used in combination with SAHA, metformin exhibits synergistic antitumor effects. Our study provides a theoretical basis for the combined application of HDAC inhibitors and metformin, potentially offering a new strategy for the treatment of TNBC.

二甲双胍通过靶向FGFR4使三阴性乳腺癌对组蛋白去乙酰化酶抑制剂敏感。
背景:三阴性乳腺癌(TNBC)具有恶性程度高、侵袭性强、易远处转移的特点,预后较差,治疗选择相对有限。二甲双胍作为一线口服降糖药,由于其在癌症预防和治疗方面的潜力,近年来引起了广泛的研究兴趣。然而,其疗效在不同的肿瘤类型中差异很大。组蛋白去乙酰化酶抑制剂(HDACi),如SAHA,已经显示出抗肿瘤活性,但TNBC对HDACi单药治疗反应较差,可能是由于JAK-STAT通路的反馈激活。探索二甲双胍联合HDACi治疗TNBC的协同作用潜力和潜在机制至关重要。方法:我们使用多种计算方法(CMap、DTsyn和DrugComb)预测二甲双胍和SAHA在TNBC中的协同作用。我们还开发了一个癌症特异性化合物模拟文库(CDTSL),并应用三步策略来识别符合“二甲双胍致敏”模型的基因。随后,我们通过细胞增殖、集落形成和凋亡实验评估了二甲双胍和SAHA在TNBC细胞系中的协同作用。此外,我们利用转录组测序、染色质免疫沉淀(ChIP)、Western blotting和细胞外酸化率(ECAR)测量等技术研究了联合治疗的分子机制。此外,我们在裸鼠皮下异种移植模型中评估了联合治疗的体内抗肿瘤效果。结果:CMap、DTsyn和DrugComb均预测了SAHA和二甲双胍在TNBC中的协同作用。筛选结果显示,HDAC10在二甲双胍致敏中起关键作用。我们发现二甲双胍和SAHA联合使用具有协同抗肿瘤作用(联合指数CI)。结论:二甲双胍通过阻断FGFR4通路和干扰代谢重编程来增强TNBC对HDAC抑制剂的敏感性。当与SAHA联合使用时,二甲双胍表现出协同抗肿瘤作用。我们的研究为HDAC抑制剂与二甲双胍联合应用提供了理论基础,可能为TNBC的治疗提供新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信