Lukáš Smieško, Jozef Mažerik, Eduard Gondáš, Matúš Dohál, Marta Jošková, Martina Šutovská, Soňa Fraňová
{"title":"<i>N</i>-Acetylcysteine and Its Therapeutic Potential in an Animal Model of Allergic Asthma.","authors":"Lukáš Smieško, Jozef Mažerik, Eduard Gondáš, Matúš Dohál, Marta Jošková, Martina Šutovská, Soňa Fraňová","doi":"10.1089/jamp.2024.0049","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> <i>N</i>-acetylcysteine (NAC) is a classical mucolytic agent that, in addition to its mucolytic activity, also exhibits antioxidant activity. This could be beneficial in treating chronic inflammatory airway diseases, including asthma. <b><i>Background:</i></b> We evaluated the ability of NAC to modulate airway defense mechanisms, airway reactivity, inflammation, and remodeling after 10 days of administration [20 and 60 mg/(kg·d)] in an experimental guinea pig model of allergic inflammation. <b><i>Methods:</i></b> The concentrations of inflammatory cytokines (interleukins: IL-4, IL-5, IL-10, IL-12, and IL-13), granulocyte macrophage-colony stimulating factor (GM-CSF), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) were measured in bronchoalveolar lavage fluid using a multiplex detection method. The concentration of remodeling marker transforming growth factor beta-1 (TGF-β1) was measured in lung homogenates using enzyme-linked immunosorbent assay. <i>In vivo,</i> changes in specific airway resistance and number of cough efforts were determined. Tracheal smooth muscle reactivity was evaluated <i>in vitro</i>. Ciliary beat frequency (CBF) indicated mucociliary clearance. <b><i>Results:</i></b> A 10-day administration of NAC at a higher dosage led to a significant decrease in the regulatory cytokines IL-4, IL-5, and GM-CSF. NAC, in both dosing schedules, decreased the levels of TGF-β1. NAC at a higher dosage reduced the number of chemically induced cough reflexes and CBF. NAC did not affect airway hyperreactivity parameters. <b><i>Conclusion:</i></b> NAC is a multifactorial drug, and under our experimental conditions of allergic inflammation, it showed positive effects on the levels of regulatory cytokines and growth factors, which probably led to a reduction in the intensity of airway defense mechanisms.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2024.0049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Background:N-acetylcysteine (NAC) is a classical mucolytic agent that, in addition to its mucolytic activity, also exhibits antioxidant activity. This could be beneficial in treating chronic inflammatory airway diseases, including asthma. Background: We evaluated the ability of NAC to modulate airway defense mechanisms, airway reactivity, inflammation, and remodeling after 10 days of administration [20 and 60 mg/(kg·d)] in an experimental guinea pig model of allergic inflammation. Methods: The concentrations of inflammatory cytokines (interleukins: IL-4, IL-5, IL-10, IL-12, and IL-13), granulocyte macrophage-colony stimulating factor (GM-CSF), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) were measured in bronchoalveolar lavage fluid using a multiplex detection method. The concentration of remodeling marker transforming growth factor beta-1 (TGF-β1) was measured in lung homogenates using enzyme-linked immunosorbent assay. In vivo, changes in specific airway resistance and number of cough efforts were determined. Tracheal smooth muscle reactivity was evaluated in vitro. Ciliary beat frequency (CBF) indicated mucociliary clearance. Results: A 10-day administration of NAC at a higher dosage led to a significant decrease in the regulatory cytokines IL-4, IL-5, and GM-CSF. NAC, in both dosing schedules, decreased the levels of TGF-β1. NAC at a higher dosage reduced the number of chemically induced cough reflexes and CBF. NAC did not affect airway hyperreactivity parameters. Conclusion: NAC is a multifactorial drug, and under our experimental conditions of allergic inflammation, it showed positive effects on the levels of regulatory cytokines and growth factors, which probably led to a reduction in the intensity of airway defense mechanisms.
期刊介绍:
Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient.
Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes:
Pulmonary drug delivery
Airway reactivity and asthma treatment
Inhalation of particles and gases in the respiratory tract
Toxic effects of inhaled agents
Aerosols as tools for studying basic physiologic phenomena.