Chiara Cosseddu, Sara Succu, Adele Frau, Francesca Mossa, Sylvia Virginie Versace, Tiziana A L Brevini, Sergio Ledda, Daniela Bebbere
{"title":"m6A RNA methylation dynamics during in vitro maturation of cumulus-oocyte complexes derived from adult or prepubertal sheep.","authors":"Chiara Cosseddu, Sara Succu, Adele Frau, Francesca Mossa, Sylvia Virginie Versace, Tiziana A L Brevini, Sergio Ledda, Daniela Bebbere","doi":"10.1007/s10815-025-03444-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>N6-methyladenosine (m6A) is the most prevalent base epigenetic modification within eukaryotic mRNAs. It participates in post-transcriptional regulation, including maternal RNA maintenance and decay in mouse oocytes and during maternal-to-zygotic transition. The landscape in other mammalian species remains largely unexplored. The present work analyzed m6A dynamics in sheep cumulus oocyte complexes (COCs), during in vitro maturation. To explore potential relationships with oocyte developmental competence, a previously established model consisting of oocytes derived from adult and prepubertal sheep was adopted.</p><p><strong>Methods: </strong>m6a dynamics were analyzed in terms of m6A RNA methylation abundance in cumulus cells (CCs) by colorimetric assay and expression of key m6A methylation-related proteins (METTL3, METTL14, METTL16, VIRMA, YTHDC1, YTHDC2, YTHDF2, YTHDF3, ALKBH5, and FTO) in both cumulus cells and oocytes by real-time PCR.</p><p><strong>Results: </strong>We report the dynamics of m6A in sheep COCs, and reveal alterations in both oocytes and cumulus cells derived from prepubertal donors. These changes were observed in terms of m6A RNA methylation levels and transcript dynamics of several m6A methylation-related proteins. Notably, our study shows that dysregulations occur after IVM.</p><p><strong>Conclusion: </strong>Overall, this work describes for the first time the dynamics of m6A in sheep COCs and uncovers the involvement of m6A RNA methylation in oocyte developmental potential.</p>","PeriodicalId":15246,"journal":{"name":"Journal of Assisted Reproduction and Genetics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Assisted Reproduction and Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10815-025-03444-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: N6-methyladenosine (m6A) is the most prevalent base epigenetic modification within eukaryotic mRNAs. It participates in post-transcriptional regulation, including maternal RNA maintenance and decay in mouse oocytes and during maternal-to-zygotic transition. The landscape in other mammalian species remains largely unexplored. The present work analyzed m6A dynamics in sheep cumulus oocyte complexes (COCs), during in vitro maturation. To explore potential relationships with oocyte developmental competence, a previously established model consisting of oocytes derived from adult and prepubertal sheep was adopted.
Methods: m6a dynamics were analyzed in terms of m6A RNA methylation abundance in cumulus cells (CCs) by colorimetric assay and expression of key m6A methylation-related proteins (METTL3, METTL14, METTL16, VIRMA, YTHDC1, YTHDC2, YTHDF2, YTHDF3, ALKBH5, and FTO) in both cumulus cells and oocytes by real-time PCR.
Results: We report the dynamics of m6A in sheep COCs, and reveal alterations in both oocytes and cumulus cells derived from prepubertal donors. These changes were observed in terms of m6A RNA methylation levels and transcript dynamics of several m6A methylation-related proteins. Notably, our study shows that dysregulations occur after IVM.
Conclusion: Overall, this work describes for the first time the dynamics of m6A in sheep COCs and uncovers the involvement of m6A RNA methylation in oocyte developmental potential.
期刊介绍:
The Journal of Assisted Reproduction and Genetics publishes cellular, molecular, genetic, and epigenetic discoveries advancing our understanding of the biology and underlying mechanisms from gametogenesis to offspring health. Special emphasis is placed on the practice and evolution of assisted reproduction technologies (ARTs) with reference to the diagnosis and management of diseases affecting fertility. Our goal is to educate our readership in the translation of basic and clinical discoveries made from human or relevant animal models to the safe and efficacious practice of human ARTs. The scientific rigor and ethical standards embraced by the JARG editorial team ensures a broad international base of expertise guiding the marriage of contemporary clinical research paradigms with basic science discovery. JARG publishes original papers, minireviews, case reports, and opinion pieces often combined into special topic issues that will educate clinicians and scientists with interests in the mechanisms of human development that bear on the treatment of infertility and emerging innovations in human ARTs. The guiding principles of male and female reproductive health impacting pre- and post-conceptional viability and developmental potential are emphasized within the purview of human reproductive health in current and future generations of our species.
The journal is published in cooperation with the American Society for Reproductive Medicine, an organization of more than 8,000 physicians, researchers, nurses, technicians and other professionals dedicated to advancing knowledge and expertise in reproductive biology.