Cell Painting of insect gut cells for exploration of molecular responses of insect epithelia to insecticides.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Franziska Annabelle Hecker, Bruno Leggio, Tim Koenig, Karsten Niehaus, Sven Geibel
{"title":"Cell Painting of insect gut cells for exploration of molecular responses of insect epithelia to insecticides.","authors":"Franziska Annabelle Hecker, Bruno Leggio, Tim Koenig, Karsten Niehaus, Sven Geibel","doi":"10.1007/s11626-025-01028-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cell Painting is a sophisticated high-content imaging technique that has been predominantly applied to mammalian cells. Recent advancements have extended its applicability to the first insect cell line, the ovarian cell line Sf9, revealing significant insights into similarities and differences in cellular responses between different taxonomic groups. This study explores the utility of Cell Painting in Helicoverpa zea gut-derived cells, specifically the RP-HzGUT-AW1 cell line, to assess the specifics of insect epithelial cells in response to chemical treatments. Upon adaptation of the analysis pipeline to accommodate their unique morphology and characteristics, our investigations revealed distinct responses of RP-HzGUT-AW1 cells compared to the ovarian insect cell line Sf9. Variations were obtained not only in the dose-response behavior to treatments but also in the overall detectability of specific modes of action. Specifically, processes that relate to osmoregulation and the formation of epithelial structures showed the most significant and distinct responses. This suggests that the specific morphological and physiological attributes of these gut-derived insect cells contribute to unique phenotypic profiles, which enables in-depth interpretation of drug efficacy and safety in these models.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01028-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell Painting is a sophisticated high-content imaging technique that has been predominantly applied to mammalian cells. Recent advancements have extended its applicability to the first insect cell line, the ovarian cell line Sf9, revealing significant insights into similarities and differences in cellular responses between different taxonomic groups. This study explores the utility of Cell Painting in Helicoverpa zea gut-derived cells, specifically the RP-HzGUT-AW1 cell line, to assess the specifics of insect epithelial cells in response to chemical treatments. Upon adaptation of the analysis pipeline to accommodate their unique morphology and characteristics, our investigations revealed distinct responses of RP-HzGUT-AW1 cells compared to the ovarian insect cell line Sf9. Variations were obtained not only in the dose-response behavior to treatments but also in the overall detectability of specific modes of action. Specifically, processes that relate to osmoregulation and the formation of epithelial structures showed the most significant and distinct responses. This suggests that the specific morphological and physiological attributes of these gut-derived insect cells contribute to unique phenotypic profiles, which enables in-depth interpretation of drug efficacy and safety in these models.

昆虫肠道细胞的细胞绘画,探索昆虫上皮对杀虫剂的分子反应。
细胞绘画是一种复杂的高含量成像技术,主要应用于哺乳动物细胞。最近的进展将其适用性扩展到第一个昆虫细胞系,卵巢细胞系Sf9,揭示了不同分类群体之间细胞反应的相似性和差异性。本研究探讨了细胞绘画在玉米螺旋虫肠源性细胞(特别是RP-HzGUT-AW1细胞系)中的应用,以评估昆虫上皮细胞对化学处理的特异性反应。在调整分析管道以适应其独特的形态和特征后,我们的研究发现RP-HzGUT-AW1细胞与卵巢昆虫细胞系Sf9相比有明显的反应。不仅在治疗的剂量反应行为上,而且在特定作用方式的总体可检测性上都有变化。具体来说,与渗透调节和上皮结构形成相关的过程表现出最显著和独特的反应。这表明,这些肠道来源的昆虫细胞的特定形态和生理属性有助于形成独特的表型特征,从而能够深入解释这些模型中的药物疗效和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信