Franziska Annabelle Hecker, Bruno Leggio, Tim Koenig, Karsten Niehaus, Sven Geibel
{"title":"Cell Painting of insect gut cells for exploration of molecular responses of insect epithelia to insecticides.","authors":"Franziska Annabelle Hecker, Bruno Leggio, Tim Koenig, Karsten Niehaus, Sven Geibel","doi":"10.1007/s11626-025-01028-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cell Painting is a sophisticated high-content imaging technique that has been predominantly applied to mammalian cells. Recent advancements have extended its applicability to the first insect cell line, the ovarian cell line Sf9, revealing significant insights into similarities and differences in cellular responses between different taxonomic groups. This study explores the utility of Cell Painting in Helicoverpa zea gut-derived cells, specifically the RP-HzGUT-AW1 cell line, to assess the specifics of insect epithelial cells in response to chemical treatments. Upon adaptation of the analysis pipeline to accommodate their unique morphology and characteristics, our investigations revealed distinct responses of RP-HzGUT-AW1 cells compared to the ovarian insect cell line Sf9. Variations were obtained not only in the dose-response behavior to treatments but also in the overall detectability of specific modes of action. Specifically, processes that relate to osmoregulation and the formation of epithelial structures showed the most significant and distinct responses. This suggests that the specific morphological and physiological attributes of these gut-derived insect cells contribute to unique phenotypic profiles, which enables in-depth interpretation of drug efficacy and safety in these models.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01028-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell Painting is a sophisticated high-content imaging technique that has been predominantly applied to mammalian cells. Recent advancements have extended its applicability to the first insect cell line, the ovarian cell line Sf9, revealing significant insights into similarities and differences in cellular responses between different taxonomic groups. This study explores the utility of Cell Painting in Helicoverpa zea gut-derived cells, specifically the RP-HzGUT-AW1 cell line, to assess the specifics of insect epithelial cells in response to chemical treatments. Upon adaptation of the analysis pipeline to accommodate their unique morphology and characteristics, our investigations revealed distinct responses of RP-HzGUT-AW1 cells compared to the ovarian insect cell line Sf9. Variations were obtained not only in the dose-response behavior to treatments but also in the overall detectability of specific modes of action. Specifically, processes that relate to osmoregulation and the formation of epithelial structures showed the most significant and distinct responses. This suggests that the specific morphological and physiological attributes of these gut-derived insect cells contribute to unique phenotypic profiles, which enables in-depth interpretation of drug efficacy and safety in these models.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.