Spatial diversity and distribution of fern and lycophyte species in karst and non-karst landscapes towards conservation needs.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1495796
Marjorie D Delos Angeles, Sirilak Radbouchoom, Boniface K Ngarega, R Sedricke Lapuz, Harald Schneider
{"title":"Spatial diversity and distribution of fern and lycophyte species in karst and non-karst landscapes towards conservation needs.","authors":"Marjorie D Delos Angeles, Sirilak Radbouchoom, Boniface K Ngarega, R Sedricke Lapuz, Harald Schneider","doi":"10.3389/fpls.2025.1495796","DOIUrl":null,"url":null,"abstract":"<p><p>Karst formations are distinguished by their high levels of species diversity and endemism, including ferns and lycophytes. However, the existing data on plant community composition in karst formations remains deficient. Addressing these knowledge gaps is imperative, given the current accelerated rates of species loss, to enhance efforts to conserve biodiversity in these habitats. This study documents and explains patterns of fern and lycophyte species diversity within karst landscapes (KL) and non-karst landscapes (NKL) in the Philippines. Our comprehensive analysis involved aggregating 19,529 occurrence points encompassing 1,024 fern and lycophyte species sourced from field expeditions, voucher records from local herbaria, and online databases. Indices for species richness, weighted endemism, and corrected weighted endemism were then computed across KL and NKL areas to describe spatial diversity and identify fern and lycophyte hotspot areas. Gap analyses were also performed to determine if established protected areas (PAs) were sufficient to cover the identified fern and lycophyte diversity hotspots. Principal Component Analysis (PCA) was conducted to determine potential ecological drivers of distribution between KL and NKL areas. The findings reveal that most fern and lycophyte species were recorded to occur in NKL areas, with 995 (97.16%) species identified, while 676 (66.02%) species were documented to occur in KLs, including 29 (2.83%) exclusive to karsts. Identified hotspots for NKL are within mountain ecosystems, which are already under existing legal protection. In contrast, KLs have five areas identified as congruent hotspots but considered gap areas due to their exclusion from current PA boundaries. Existing PAs thus provide less protection to karst habitats and their associated floras. PCA did not reveal any significant environmental predictors, suggesting separation of KL and NKL species distributions, possibly due to lack of high-resolution environment data available for karsts. To facilitate the conservation of fern and lycophyte species in karsts, we propose installing and expanding existing PA boundaries, along with conducting more focused surveys in karst regions to better understand their ecological dynamics.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1495796"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912880/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1495796","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Karst formations are distinguished by their high levels of species diversity and endemism, including ferns and lycophytes. However, the existing data on plant community composition in karst formations remains deficient. Addressing these knowledge gaps is imperative, given the current accelerated rates of species loss, to enhance efforts to conserve biodiversity in these habitats. This study documents and explains patterns of fern and lycophyte species diversity within karst landscapes (KL) and non-karst landscapes (NKL) in the Philippines. Our comprehensive analysis involved aggregating 19,529 occurrence points encompassing 1,024 fern and lycophyte species sourced from field expeditions, voucher records from local herbaria, and online databases. Indices for species richness, weighted endemism, and corrected weighted endemism were then computed across KL and NKL areas to describe spatial diversity and identify fern and lycophyte hotspot areas. Gap analyses were also performed to determine if established protected areas (PAs) were sufficient to cover the identified fern and lycophyte diversity hotspots. Principal Component Analysis (PCA) was conducted to determine potential ecological drivers of distribution between KL and NKL areas. The findings reveal that most fern and lycophyte species were recorded to occur in NKL areas, with 995 (97.16%) species identified, while 676 (66.02%) species were documented to occur in KLs, including 29 (2.83%) exclusive to karsts. Identified hotspots for NKL are within mountain ecosystems, which are already under existing legal protection. In contrast, KLs have five areas identified as congruent hotspots but considered gap areas due to their exclusion from current PA boundaries. Existing PAs thus provide less protection to karst habitats and their associated floras. PCA did not reveal any significant environmental predictors, suggesting separation of KL and NKL species distributions, possibly due to lack of high-resolution environment data available for karsts. To facilitate the conservation of fern and lycophyte species in karsts, we propose installing and expanding existing PA boundaries, along with conducting more focused surveys in karst regions to better understand their ecological dynamics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信