{"title":"Integration of GWAS and transcriptome analysis to identify temperature-dependent genes involved in germination of rapeseed (<i>Brassica napus</i> L.).","authors":"Ruisen Wang, Guangyu Wu, Jingyi Zhang, Weizhen Hu, Xiangtan Yao, Lixi Jiang, Yang Zhu","doi":"10.3389/fpls.2025.1551317","DOIUrl":null,"url":null,"abstract":"<p><p>Low temperature germination (LTG) is one of crucial agronomic traits for field-grown rapeseed in the Yangtze River Basin, where delayed sowing frequently exposes germination to cold stress. Because of its importance, the genetic basis underlying rapeseed germination under different temperatures has been continuously focused. By long-term field observation, we screened out two cultivars with significantly different LTG performance (JY1621 and JY1605) in field and lab conditions, which therefore were further used for the transcriptome sequencings at three key timepoints under normal and low temperatures. Comparative analysis among multiple groups of differentially expressed genes (DEGs) revealed a set of either early or late temperature response germination (ETRG or LTRG) genes, as well as cold-tolerant (CDT) and temperature-insensitive (TPI) candidate regulators at different germination stages. Furthermore, we performed a genome-wide association study (GWAS) using germination index of 273 rapeseed accessions and identified 24 significant loci associated with germination potential under normal temperatures. Through integrated analysis of transcriptome sequencing and GWAS, we identified a series of candidate genes involved in temperature-dependent germination. Based on the comprehensive analysis, we hypothesized that <i>BnaA3.CYP77A4</i> and <i>BnaA3.NAC078</i> could be important candidate genes for LTG due to their expression patterns and haplotype distributions. This study performed the multi-omics analysis on temperature-dependent germination and provided potential genetic loci and candidate genes required for robust germination, which could be further considered for low-temperature germination breeding of rapeseed.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1551317"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911475/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1551317","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Low temperature germination (LTG) is one of crucial agronomic traits for field-grown rapeseed in the Yangtze River Basin, where delayed sowing frequently exposes germination to cold stress. Because of its importance, the genetic basis underlying rapeseed germination under different temperatures has been continuously focused. By long-term field observation, we screened out two cultivars with significantly different LTG performance (JY1621 and JY1605) in field and lab conditions, which therefore were further used for the transcriptome sequencings at three key timepoints under normal and low temperatures. Comparative analysis among multiple groups of differentially expressed genes (DEGs) revealed a set of either early or late temperature response germination (ETRG or LTRG) genes, as well as cold-tolerant (CDT) and temperature-insensitive (TPI) candidate regulators at different germination stages. Furthermore, we performed a genome-wide association study (GWAS) using germination index of 273 rapeseed accessions and identified 24 significant loci associated with germination potential under normal temperatures. Through integrated analysis of transcriptome sequencing and GWAS, we identified a series of candidate genes involved in temperature-dependent germination. Based on the comprehensive analysis, we hypothesized that BnaA3.CYP77A4 and BnaA3.NAC078 could be important candidate genes for LTG due to their expression patterns and haplotype distributions. This study performed the multi-omics analysis on temperature-dependent germination and provided potential genetic loci and candidate genes required for robust germination, which could be further considered for low-temperature germination breeding of rapeseed.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.