A mini review of transforming dementia care in China with data-driven insights: overcoming diagnostic and time-delayed barriers.

IF 4.1 2区 医学 Q2 GERIATRICS & GERONTOLOGY
Frontiers in Aging Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.3389/fnagi.2025.1554834
Pinya Lu, Xiaolu Lin, Xiaofeng Liu, Mingfeng Chen, Caiyan Li, Hongqin Yang, Yuhua Wang, Xuemei Ding
{"title":"A mini review of transforming dementia care in China with data-driven insights: overcoming diagnostic and time-delayed barriers.","authors":"Pinya Lu, Xiaolu Lin, Xiaofeng Liu, Mingfeng Chen, Caiyan Li, Hongqin Yang, Yuhua Wang, Xuemei Ding","doi":"10.3389/fnagi.2025.1554834","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Inadequate primary care infrastructure and training in China and misconceptions about aging lead to high mis-/under-diagnoses and serious time delays for dementia patients, imposing significant burdens on family members and medical carers.</p><p><strong>Main body: </strong>A flowchart integrating rural and urban areas of China dementia care pathway is proposed, especially spotting the obstacles of mis/under-diagnoses and time delays that can be alleviated by data-driven computational strategies. Artificial intelligence (AI) and machine learning models built on dementia data are succinctly reviewed in terms of the roadmap of dementia care from home, community to hospital settings. Challenges and corresponding recommendations to clinical transformation are then reported from the viewpoint of diverse dementia data integrity and accessibility, as well as models' interpretability, reliability, and transparency.</p><p><strong>Discussion: </strong>Dementia cohort study along with developing a center-crossed dementia data platform in China should be strongly encouraged, also data should be publicly accessible where appropriate. Only be doing so can the challenges be overcome and can AI-enabled dementia research be enhanced, leading to an optimized pathway of dementia care in China. Future policy-guided cooperation between researchers and multi-stakeholders are urgently called for dementia 4E (early-screening, early-assessment, early-diagnosis, and early-intervention).</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"17 ","pages":"1554834"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2025.1554834","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Inadequate primary care infrastructure and training in China and misconceptions about aging lead to high mis-/under-diagnoses and serious time delays for dementia patients, imposing significant burdens on family members and medical carers.

Main body: A flowchart integrating rural and urban areas of China dementia care pathway is proposed, especially spotting the obstacles of mis/under-diagnoses and time delays that can be alleviated by data-driven computational strategies. Artificial intelligence (AI) and machine learning models built on dementia data are succinctly reviewed in terms of the roadmap of dementia care from home, community to hospital settings. Challenges and corresponding recommendations to clinical transformation are then reported from the viewpoint of diverse dementia data integrity and accessibility, as well as models' interpretability, reliability, and transparency.

Discussion: Dementia cohort study along with developing a center-crossed dementia data platform in China should be strongly encouraged, also data should be publicly accessible where appropriate. Only be doing so can the challenges be overcome and can AI-enabled dementia research be enhanced, leading to an optimized pathway of dementia care in China. Future policy-guided cooperation between researchers and multi-stakeholders are urgently called for dementia 4E (early-screening, early-assessment, early-diagnosis, and early-intervention).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Aging Neuroscience
Frontiers in Aging Neuroscience GERIATRICS & GERONTOLOGY-NEUROSCIENCES
CiteScore
6.30
自引率
8.30%
发文量
1426
期刊介绍: Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信