Landscapes of the main components, metabolic and microbial signatures, and their correlations during stack "sweating" of Eucommiae Cortex.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-02-28 eCollection Date: 2025-01-01 DOI:10.3389/fmicb.2025.1550337
Linfeng Wang, Mengxian Wu, Bingnan Gu, Erfeng Wang, Faliang Wu, Jiapeng Yang, Bing Guo, Xingke Li, Pengpai Zhang
{"title":"Landscapes of the main components, metabolic and microbial signatures, and their correlations during stack \"sweating\" of <i>Eucommiae Cortex</i>.","authors":"Linfeng Wang, Mengxian Wu, Bingnan Gu, Erfeng Wang, Faliang Wu, Jiapeng Yang, Bing Guo, Xingke Li, Pengpai Zhang","doi":"10.3389/fmicb.2025.1550337","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>\"Sweating,\" a key step in the processing and production of <i>Eucommiae Cortex</i> (EC), which plays a vital role in the formation of the medicinal quality of EC. However, the mechanism of the effect of this traditional treatment of herbs on the quality of herbs is still unclear.</p><p><strong>Methods: </strong>In this study, high performance liquid chromatography (HPLC), UPLC/MS-based untargeted metabolomics and high-throughput sequencing were applied to investigate the dynamic changes of the main active ingredients, differential metabolites and bacterial communities in the process of \"sweating\" in EC. The samples were prepared by the traditional stacking \"sweating\" method, and the samples were collected once a day for five consecutive days.</p><p><strong>Results: </strong>The results showed that the contents of the main active constituents, geniposidic acid (GPA), chlorogenic acid (CA), rutin (AU), pinoresinol diglucoside (PD) and total flavonoids (TFS), increased significantly after steaming, followed by a slight decrease. Furthermore, 807 metabolites were identified as crucial factors contributing to the metabolic alterations induced by the \"sweating\" process. Microbial diversity analysis showed considerable changes in microbiota characteristics, and the main functional microorganisms before and after \"sweating\" of EC were <i>Gluconobacter, unclassified_c_Gammaproteobacteria, Pseudomonas, Pantoea, Pedobacter, and Parecoccus</i>, which were involved in the five metabolic pathways of other secondary metabolites leading to significant changes in alkaloids, amino acid related compounds, flavonoids, phenylpropanoids and terpenoids.</p><p><strong>Discussion: </strong>The correlation network established between core bacterial communities, active ingredients, and metabolic pathways elucidates the microbial regulation of EC quality during sweating. These findings provide a scientific foundation for optimizing processing duration and advancing quality control strategies through targeted microbial community management.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1550337"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1550337","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: "Sweating," a key step in the processing and production of Eucommiae Cortex (EC), which plays a vital role in the formation of the medicinal quality of EC. However, the mechanism of the effect of this traditional treatment of herbs on the quality of herbs is still unclear.

Methods: In this study, high performance liquid chromatography (HPLC), UPLC/MS-based untargeted metabolomics and high-throughput sequencing were applied to investigate the dynamic changes of the main active ingredients, differential metabolites and bacterial communities in the process of "sweating" in EC. The samples were prepared by the traditional stacking "sweating" method, and the samples were collected once a day for five consecutive days.

Results: The results showed that the contents of the main active constituents, geniposidic acid (GPA), chlorogenic acid (CA), rutin (AU), pinoresinol diglucoside (PD) and total flavonoids (TFS), increased significantly after steaming, followed by a slight decrease. Furthermore, 807 metabolites were identified as crucial factors contributing to the metabolic alterations induced by the "sweating" process. Microbial diversity analysis showed considerable changes in microbiota characteristics, and the main functional microorganisms before and after "sweating" of EC were Gluconobacter, unclassified_c_Gammaproteobacteria, Pseudomonas, Pantoea, Pedobacter, and Parecoccus, which were involved in the five metabolic pathways of other secondary metabolites leading to significant changes in alkaloids, amino acid related compounds, flavonoids, phenylpropanoids and terpenoids.

Discussion: The correlation network established between core bacterial communities, active ingredients, and metabolic pathways elucidates the microbial regulation of EC quality during sweating. These findings provide a scientific foundation for optimizing processing duration and advancing quality control strategies through targeted microbial community management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信