Behavioral alterations in antibiotic-treated mice associated with gut microbiota dysbiosis: insights from 16S rRNA and metabolomics.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-02-28 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1478304
Asma Bibi, Famin Zhang, Jilong Shen, Ahmad Ud Din, Yuanhong Xu
{"title":"Behavioral alterations in antibiotic-treated mice associated with gut microbiota dysbiosis: insights from 16S rRNA and metabolomics.","authors":"Asma Bibi, Famin Zhang, Jilong Shen, Ahmad Ud Din, Yuanhong Xu","doi":"10.3389/fnins.2025.1478304","DOIUrl":null,"url":null,"abstract":"<p><p>The gut and brain interact through various metabolic and signaling pathways, each of which influences mental health. Gut dysbiosis caused by antibiotics is a well-known phenomenon that has serious implications for gut microbiota-brain interactions. Although antibiotics disrupt the gut microbiota's fundamental structure, the mechanisms that modulate the response and their impact on brain function are still unclear. It is imperative to comprehend and investigate crucial regulators and factors that play important roles. We aimed to study the effect of long-term antibiotic-induced disruption of gut microbiota, host metabolomes, and brain function and, particularly, to determine the basic interactions between them by treating the C57BL/6 mice with two different, most commonly used antibiotics, ciprofloxacin and amoxicillin. Anxiety-like behavior was confirmed by the elevated plus-maze test and open field test. Gut microbes and their metabolite profiles in fecal, serum, and brain samples were determined by 16S rRNA sequencing and untargeted metabolomics. In our study, long-term antibiotic treatment exerted anxiety-like effects. The fecal microbiota and metabolite status revealed that the top five genera found were <i>Lactobacillus, Bacteroides, Akkermansia, Ruminococcus_gnavus_</i>group, and unclassified <i>norank_f_Muribaculaceae</i>. The concentration of serotonin, L-Tyrosine, 5-Hydroxy-L-tryptophan, L-Glutamic acid, L-Glutamate, 5-Hydroxyindole acetic acid, and dopaminergic synapsis was comparatively low, while adenosine was high in antibiotic-treated mice. The KEGG enrichment analysis of serum and brain samples showed that amino acid metabolism pathways, such as tryptophan metabolism, threonine metabolism, serotonergic synapsis, methionine metabolism, and neuroactive ligand-receptor interaction, were significantly decreased in antibiotic-treated mice. Our study demonstrates that long-term antibiotic use induces gut dysbiosis and alters metabolic responses, leading to the dysregulation of brain signaling molecules and anxiety-like behavior. These findings highlight the complex interactions between gut microbiota and metabolic functions, providing new insights into the influence of microbial communities on gut-brain communication.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1478304"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1478304","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The gut and brain interact through various metabolic and signaling pathways, each of which influences mental health. Gut dysbiosis caused by antibiotics is a well-known phenomenon that has serious implications for gut microbiota-brain interactions. Although antibiotics disrupt the gut microbiota's fundamental structure, the mechanisms that modulate the response and their impact on brain function are still unclear. It is imperative to comprehend and investigate crucial regulators and factors that play important roles. We aimed to study the effect of long-term antibiotic-induced disruption of gut microbiota, host metabolomes, and brain function and, particularly, to determine the basic interactions between them by treating the C57BL/6 mice with two different, most commonly used antibiotics, ciprofloxacin and amoxicillin. Anxiety-like behavior was confirmed by the elevated plus-maze test and open field test. Gut microbes and their metabolite profiles in fecal, serum, and brain samples were determined by 16S rRNA sequencing and untargeted metabolomics. In our study, long-term antibiotic treatment exerted anxiety-like effects. The fecal microbiota and metabolite status revealed that the top five genera found were Lactobacillus, Bacteroides, Akkermansia, Ruminococcus_gnavus_group, and unclassified norank_f_Muribaculaceae. The concentration of serotonin, L-Tyrosine, 5-Hydroxy-L-tryptophan, L-Glutamic acid, L-Glutamate, 5-Hydroxyindole acetic acid, and dopaminergic synapsis was comparatively low, while adenosine was high in antibiotic-treated mice. The KEGG enrichment analysis of serum and brain samples showed that amino acid metabolism pathways, such as tryptophan metabolism, threonine metabolism, serotonergic synapsis, methionine metabolism, and neuroactive ligand-receptor interaction, were significantly decreased in antibiotic-treated mice. Our study demonstrates that long-term antibiotic use induces gut dysbiosis and alters metabolic responses, leading to the dysregulation of brain signaling molecules and anxiety-like behavior. These findings highlight the complex interactions between gut microbiota and metabolic functions, providing new insights into the influence of microbial communities on gut-brain communication.

抗生素治疗小鼠与肠道菌群失调相关的行为改变:来自16S rRNA和代谢组学的见解
肠道和大脑通过各种代谢和信号传导途径相互作用,每一种途径都会影响心理健康。抗生素引起的肠道生态失调是一种众所周知的现象,它对肠道微生物群与大脑的相互作用有严重的影响。尽管抗生素破坏了肠道微生物群的基本结构,但调节这种反应的机制及其对大脑功能的影响仍不清楚。必须了解和调查发挥重要作用的关键监管机构和因素。我们的目的是研究长期抗生素诱导的肠道微生物群、宿主代谢组和脑功能破坏的影响,特别是通过使用两种最常用的抗生素环丙沙星和阿莫西林治疗C57BL/6小鼠,确定它们之间的基本相互作用。焦虑样行为通过高架+迷宫实验和空地实验证实。通过16S rRNA测序和非靶向代谢组学,确定了粪便、血清和脑样本中的肠道微生物及其代谢物谱。在我们的研究中,长期抗生素治疗产生了类似焦虑的效果。粪便微生物群和代谢产物分析结果显示,前5属分别为乳杆菌属(Lactobacillus)、拟杆菌属(Bacteroides)、Akkermansia、Ruminococcus_gnavus_group和未分类的norank_f_Muribaculaceae。血清素、l -酪氨酸、5-羟基- l -色氨酸、l -谷氨酸、l -谷氨酸、5-羟基吲哚乙酸和多巴胺能突触的浓度较低,而腺苷的浓度较高。血清和脑样品的KEGG富集分析显示,抗生素治疗小鼠的氨基酸代谢途径,如色氨酸代谢、苏氨酸代谢、血清素能突触、蛋氨酸代谢和神经活性配体-受体相互作用显著降低。我们的研究表明,长期使用抗生素会引起肠道生态失调,改变代谢反应,导致大脑信号分子失调和焦虑样行为。这些发现强调了肠道微生物群与代谢功能之间复杂的相互作用,为微生物群落对肠-脑通讯的影响提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信