Mild traumatic brain injury increases vulnerability to post-traumatic stress disorder in rats and the possible role of hippocampal DNA methylation.

IF 2.6 3区 医学 Q2 BEHAVIORAL SCIENCES
Frontiers in Behavioral Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.3389/fnbeh.2025.1539028
Yujie Niu, Zhibiao Cai, Junkai Cheng, Jie Zhou, Xiaodong Qu, Changdong Li, Zhongjing Zhang, Shenghao Zhang, Yaqiang Nan, Qifeng Tang, Lei Zhang, Yelu Hao
{"title":"Mild traumatic brain injury increases vulnerability to post-traumatic stress disorder in rats and the possible role of hippocampal DNA methylation.","authors":"Yujie Niu, Zhibiao Cai, Junkai Cheng, Jie Zhou, Xiaodong Qu, Changdong Li, Zhongjing Zhang, Shenghao Zhang, Yaqiang Nan, Qifeng Tang, Lei Zhang, Yelu Hao","doi":"10.3389/fnbeh.2025.1539028","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Clinical studies have established that patients with mild traumatic brain injury (mTBI) are at an increased risk for developing post-traumatic stress disorder (PTSD), suggesting that mTBI increases vulnerability to subsequent PTSD onset. However, preclinical animal studies investigating this link remain scarce, and the specific biological mechanism through which mTBI increases vulnerability to PTSD is largely unknown.</p><p><strong>Methods: </strong>In this study, we modeled mTBI in rats using a mild, closed-head, weight-drop injury, followed 72 h later by exposure to single prolonged stress (SPS) to simulate PTSD. Then, we investigated the impact of mTBI on subsequent PTSD development by observing the behaviors of rats in a series of validated behavioral tests and further explored the possible role of hippocampal DNA methylation.</p><p><strong>Results: </strong>We found that, compared with rats in the PTSD-only group, those in the mTBI + PTSD group exhibited higher anxiety levels, higher depression levels, and impaired spatial learning and memory as determined in the open field test, the forced swimming test, and the Morris water maze test, respectively. Rats in the mTBI + PTSD group also exhibited higher hippocampal DNMT3b protein expression compared with those in the PTSD group.</p><p><strong>Conclusion: </strong>In conclusion, our results demonstrated that mTBI increases vulnerability to PTSD in rats, possibly through alterations in hippocampal DNA methylation patterns.</p>","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"19 ","pages":"1539028"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911326/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnbeh.2025.1539028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Clinical studies have established that patients with mild traumatic brain injury (mTBI) are at an increased risk for developing post-traumatic stress disorder (PTSD), suggesting that mTBI increases vulnerability to subsequent PTSD onset. However, preclinical animal studies investigating this link remain scarce, and the specific biological mechanism through which mTBI increases vulnerability to PTSD is largely unknown.

Methods: In this study, we modeled mTBI in rats using a mild, closed-head, weight-drop injury, followed 72 h later by exposure to single prolonged stress (SPS) to simulate PTSD. Then, we investigated the impact of mTBI on subsequent PTSD development by observing the behaviors of rats in a series of validated behavioral tests and further explored the possible role of hippocampal DNA methylation.

Results: We found that, compared with rats in the PTSD-only group, those in the mTBI + PTSD group exhibited higher anxiety levels, higher depression levels, and impaired spatial learning and memory as determined in the open field test, the forced swimming test, and the Morris water maze test, respectively. Rats in the mTBI + PTSD group also exhibited higher hippocampal DNMT3b protein expression compared with those in the PTSD group.

Conclusion: In conclusion, our results demonstrated that mTBI increases vulnerability to PTSD in rats, possibly through alterations in hippocampal DNA methylation patterns.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Behavioral Neuroscience
Frontiers in Behavioral Neuroscience BEHAVIORAL SCIENCES-NEUROSCIENCES
CiteScore
4.70
自引率
3.30%
发文量
506
审稿时长
6-12 weeks
期刊介绍: Frontiers in Behavioral Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the neural mechanisms underlying behavior. Field Chief Editor Nuno Sousa at the Instituto de Pesquisa em Ciências da Vida e da Saúde (ICVS) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. This journal publishes major insights into the neural mechanisms of animal and human behavior, and welcomes articles studying the interplay between behavior and its neurobiological basis at all levels: from molecular biology and genetics, to morphological, biochemical, neurochemical, electrophysiological, neuroendocrine, pharmacological, and neuroimaging studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信