Sphingomonas Paucimobilis-derived Extracellular Vesicles Reverse Aβ-induced Dysregulation of Neurotrophic Factors, Mitochondrial Function, and Inflammatory Factors through MeCP2-mediated Mechanism.

IF 1.8 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Eun-Hwa Lee, Hyejin Kwon, So-Young Park, Jin-Young Park, Jin-Hwan Hong, Jae-Won Paeng, Yoon-Keun Kim, Pyung-Lim Han
{"title":"<i>Sphingomonas Paucimobilis</i>-derived Extracellular Vesicles Reverse Aβ-induced Dysregulation of Neurotrophic Factors, Mitochondrial Function, and Inflammatory Factors through MeCP2-mediated Mechanism.","authors":"Eun-Hwa Lee, Hyejin Kwon, So-Young Park, Jin-Young Park, Jin-Hwan Hong, Jae-Won Paeng, Yoon-Keun Kim, Pyung-Lim Han","doi":"10.5607/en25001","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have shown an increased abundance of <i>Sphingomonas paucimobilis</i>, an aerobic, Gram-negative bacterium with a distinctive cell envelope rich in glycosphingolipids, within the gut microbiome of individuals with Alzheimer Disease (AD). However, the fact that <i>S. paucimobilis</i> is a well-known pathogen associated with nosocomial infections presents a significant challenge in investigating whether its presence in the gut microbiome is detrimental or beneficial, particularly in the context of AD. This study examines the impact of <i>S. paucimobilis</i>-derived extracellular vesicles (Spa-EV) on Aβ-induced pathology in cellular and animal models of AD. Microarray analysis reveals that <i>Spa</i>-EV treatment modulates Aβ42-induced alterations in gene expression in both HT22 neuronal cells and BV2 microglia cells. Among the genes significantly affected by Spa-EV, notable examples include Bdnf, Nt3/4, and Trkb, which are key players of neurotrophic signaling; Pgc1α, an upstream regulator of mitochondrial biogenesis; Mecp2 and Sirt1, epigenetic factors that regulate numerous gene expressions; and Il1β, Tnfα, and Nfκb-p65, which are associated with neuroinflammation. Remarkably, <i>Spa</i>-EV effectively reverses Aβ42-induced alteration in the expression of these genes through the upregulation of Mecp2. Furthermore, administration of <i>Spa</i>-EV in Tg-APP/PS1 mice restores the reduced expression of neurotrophic factors, Pgc1α, MeCP2, and Sirt1, while suppressing the increased expression of proinflammatory genes in the brain. Our results indicate that <i>Spa</i>-EV has the potential to reverse Aβ-induced dysregulation of gene expression in neuronal and microglial cells. These alterations encompass those essential for neurotrophic signaling and neuronal plasticity, mitochondrial function, and the regulation of inflammatory processes.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"34 1","pages":"20-33"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919641/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en25001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have shown an increased abundance of Sphingomonas paucimobilis, an aerobic, Gram-negative bacterium with a distinctive cell envelope rich in glycosphingolipids, within the gut microbiome of individuals with Alzheimer Disease (AD). However, the fact that S. paucimobilis is a well-known pathogen associated with nosocomial infections presents a significant challenge in investigating whether its presence in the gut microbiome is detrimental or beneficial, particularly in the context of AD. This study examines the impact of S. paucimobilis-derived extracellular vesicles (Spa-EV) on Aβ-induced pathology in cellular and animal models of AD. Microarray analysis reveals that Spa-EV treatment modulates Aβ42-induced alterations in gene expression in both HT22 neuronal cells and BV2 microglia cells. Among the genes significantly affected by Spa-EV, notable examples include Bdnf, Nt3/4, and Trkb, which are key players of neurotrophic signaling; Pgc1α, an upstream regulator of mitochondrial biogenesis; Mecp2 and Sirt1, epigenetic factors that regulate numerous gene expressions; and Il1β, Tnfα, and Nfκb-p65, which are associated with neuroinflammation. Remarkably, Spa-EV effectively reverses Aβ42-induced alteration in the expression of these genes through the upregulation of Mecp2. Furthermore, administration of Spa-EV in Tg-APP/PS1 mice restores the reduced expression of neurotrophic factors, Pgc1α, MeCP2, and Sirt1, while suppressing the increased expression of proinflammatory genes in the brain. Our results indicate that Spa-EV has the potential to reverse Aβ-induced dysregulation of gene expression in neuronal and microglial cells. These alterations encompass those essential for neurotrophic signaling and neuronal plasticity, mitochondrial function, and the regulation of inflammatory processes.

鞘单胞菌衍生的细胞外囊泡通过mecp2介导的机制逆转a β诱导的神经营养因子、线粒体功能和炎症因子的失调。
最近的研究表明,在阿尔茨海默病(AD)患者的肠道微生物群中,少动鞘氨单胞菌(Sphingomonas haucimobilis)的丰度增加,这是一种需氧革兰氏阴性细菌,具有独特的富含鞘氨脂糖的细胞包膜。然而,少动葡萄球菌是一种众所周知的与医院感染相关的病原体,这一事实为研究其在肠道微生物群中的存在是有害还是有益提出了重大挑战,特别是在AD的背景下。本研究探讨了S. paucimobilis来源的细胞外囊泡(Spa-EV)对a β诱导的AD细胞和动物模型病理的影响。微阵列分析显示,Spa-EV处理可调节a β42诱导的HT22神经元细胞和BV2小胶质细胞基因表达的改变。受Spa-EV显著影响的基因包括Bdnf、Nt3/4和Trkb,它们是神经营养信号的关键参与者;线粒体生物发生上游调控因子Pgc1α;Mecp2和Sirt1,调控众多基因表达的表观遗传因子;以及与神经炎症相关的il - 1β、Tnfα和Nfκb-p65。值得注意的是,Spa-EV通过上调Mecp2有效地逆转了a β42诱导的这些基因表达的改变。此外,在Tg-APP/PS1小鼠中给予Spa-EV可以恢复神经营养因子、Pgc1α、MeCP2和Sirt1的表达,同时抑制大脑中促炎基因的表达。我们的研究结果表明,Spa-EV具有逆转a β诱导的神经元和小胶质细胞基因表达失调的潜力。这些改变包括神经营养信号和神经元可塑性、线粒体功能以及炎症过程的调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Neurobiology
Experimental Neurobiology Neuroscience-Cellular and Molecular Neuroscience
CiteScore
4.30
自引率
4.20%
发文量
29
期刊介绍: Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信