{"title":"Biodegradable polyester-based hyperbranched nanocarrier-modified with N-acetyl glucosamine for efficient drug delivery to cancer cells through GLUTs.","authors":"Aazam Shaikh, Rajesh Salve, Devyani Sengar, Virendra Gajbhiye","doi":"10.3389/fbioe.2025.1491206","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer, ranking just below cardiovascular diseases, is a leading cause of mortality worldwide. The key to enhancing survival rates among cancer patients lies in the early detection, removal, and treatment of tumors. However, the broad-spectrum nature of current treatments, including chemotherapy and radiation therapy, results in significant collateral damage to healthy cells and tissues. In this context, hyperbranched polymers present a promising avenue for more targeted therapy. These polymers can be loaded with chemotherapeutic drugs and modified with specific ligands to selectively target cancer cells via glucose transporters, which are overexpressed in many cancer types. To enhance the delivery of drugs to cancer cells, we have engineered an N-acetyl glucosamine conjugated version of this polymer. The characterization of these nanocarriers was evaluated using various techniques, including <sup>1</sup>H NMR, dynamic light scattering, and FTIR spectroscopy. Additionally, confocal microscopy was utilized to compare the accumulation of doxorubicin in cancer cells using both the N-acetyl glucosamine-conjugated and unmodified versions of H40 Boltorn™. Our observations indicated a superior accumulation of doxorubicin in cells treated with the modified H40 polymer. Further evaluation of the drug-loaded nanocarriers was conducted on MDA-MB-231 and 4T1 breast cancer cell lines, focusing on their cytotoxic effects. This suggests that the targeted delivery of anticancer drugs using the modified H40 Boltorn™ nanocarriers significantly enhances the ability to kill breast cancer cells, offering a more efficient and selective approach to chemotherapy that minimizes impact on healthy tissues and cells.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1491206"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1491206","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer, ranking just below cardiovascular diseases, is a leading cause of mortality worldwide. The key to enhancing survival rates among cancer patients lies in the early detection, removal, and treatment of tumors. However, the broad-spectrum nature of current treatments, including chemotherapy and radiation therapy, results in significant collateral damage to healthy cells and tissues. In this context, hyperbranched polymers present a promising avenue for more targeted therapy. These polymers can be loaded with chemotherapeutic drugs and modified with specific ligands to selectively target cancer cells via glucose transporters, which are overexpressed in many cancer types. To enhance the delivery of drugs to cancer cells, we have engineered an N-acetyl glucosamine conjugated version of this polymer. The characterization of these nanocarriers was evaluated using various techniques, including 1H NMR, dynamic light scattering, and FTIR spectroscopy. Additionally, confocal microscopy was utilized to compare the accumulation of doxorubicin in cancer cells using both the N-acetyl glucosamine-conjugated and unmodified versions of H40 Boltorn™. Our observations indicated a superior accumulation of doxorubicin in cells treated with the modified H40 polymer. Further evaluation of the drug-loaded nanocarriers was conducted on MDA-MB-231 and 4T1 breast cancer cell lines, focusing on their cytotoxic effects. This suggests that the targeted delivery of anticancer drugs using the modified H40 Boltorn™ nanocarriers significantly enhances the ability to kill breast cancer cells, offering a more efficient and selective approach to chemotherapy that minimizes impact on healthy tissues and cells.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.