Recent achievements in synthesis of anthracene scaffolds catalyzed transition metals.

IF 3.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Frontiers in Chemistry Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.3389/fchem.2025.1545252
Fadhil Faez Sead, Vicky Jain, R Roopashree, Aditya Kashyap, Suman Saini, Girish Chandra Sharma, Pushpa Negi Bhakuni, Mosstafa Kazemi, Ramin Javahershenas
{"title":"Recent achievements in synthesis of anthracene scaffolds catalyzed transition metals.","authors":"Fadhil Faez Sead, Vicky Jain, R Roopashree, Aditya Kashyap, Suman Saini, Girish Chandra Sharma, Pushpa Negi Bhakuni, Mosstafa Kazemi, Ramin Javahershenas","doi":"10.3389/fchem.2025.1545252","DOIUrl":null,"url":null,"abstract":"<p><p>In the last 10 years, the synthesis of anthracene scaffolds has attracted considerable interest because of their distinctive electronic characteristics and various uses in organic electronics, photovoltaics, and therapeutics. Anthracene, a polycyclic aromatic hydrocarbon, is valued for its lightweight, stability, and electron transport capabilities, making it a key building block in advanced materials. Traditional synthesis methods often face challenges such as low selectivity and harsh conditions. However, recent advancements in transition metal-catalyzed reactions have transformed the field, offering more efficient and versatile approaches. This review examines methodologies utilizing transition metal catalysts like palladium, zinc, indium, cobalt, gold, iridium, rhodium and ruthenium, which have enabled novel synthetic pathways and selective formation of substituted anthracenes through cross-coupling reactions. The function of ligands, including phosphines and N-heterocyclic carbenes, in improving reaction efficiency and selectivity is also examined. The shift towards greener methodologies is noted, with a focus on minimizing waste and reducing toxic reagents. The shift towards greener methodologies is noted, with a focus on minimizing waste and reducing toxic reagents. Several case studies demonstrate the successful application of these techniques, highlighting the structural diversity and functional potential of anthracene derivatives in various applications.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1545252"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1545252","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the last 10 years, the synthesis of anthracene scaffolds has attracted considerable interest because of their distinctive electronic characteristics and various uses in organic electronics, photovoltaics, and therapeutics. Anthracene, a polycyclic aromatic hydrocarbon, is valued for its lightweight, stability, and electron transport capabilities, making it a key building block in advanced materials. Traditional synthesis methods often face challenges such as low selectivity and harsh conditions. However, recent advancements in transition metal-catalyzed reactions have transformed the field, offering more efficient and versatile approaches. This review examines methodologies utilizing transition metal catalysts like palladium, zinc, indium, cobalt, gold, iridium, rhodium and ruthenium, which have enabled novel synthetic pathways and selective formation of substituted anthracenes through cross-coupling reactions. The function of ligands, including phosphines and N-heterocyclic carbenes, in improving reaction efficiency and selectivity is also examined. The shift towards greener methodologies is noted, with a focus on minimizing waste and reducing toxic reagents. The shift towards greener methodologies is noted, with a focus on minimizing waste and reducing toxic reagents. Several case studies demonstrate the successful application of these techniques, highlighting the structural diversity and functional potential of anthracene derivatives in various applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信