Impact of hospital-specific domain adaptation on BERT-based models to classify neuroradiology reports.

IF 4.7 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Siddharth Agarwal, David Wood, Benjamin A K Murray, Yiran Wei, Ayisha Al Busaidi, Sina Kafiabadi, Emily Guilhem, Jeremy Lynch, Matthew Townend, Asif Mazumder, Gareth J Barker, James H Cole, Peter Sasieni, Sebastien Ourselin, Marc Modat, Thomas C Booth
{"title":"Impact of hospital-specific domain adaptation on BERT-based models to classify neuroradiology reports.","authors":"Siddharth Agarwal, David Wood, Benjamin A K Murray, Yiran Wei, Ayisha Al Busaidi, Sina Kafiabadi, Emily Guilhem, Jeremy Lynch, Matthew Townend, Asif Mazumder, Gareth J Barker, James H Cole, Peter Sasieni, Sebastien Ourselin, Marc Modat, Thomas C Booth","doi":"10.1007/s00330-025-11500-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To determine the effectiveness of hospital-specific domain adaptation through masked language modelling (MLM) on BERT-based models' performance in classifying neuroradiology reports, and to compare these models with open-source large language models (LLMs).</p><p><strong>Materials and methods: </strong>This retrospective study (2008-2019) utilised 126,556 and 86,032 MRI brain reports from two tertiary hospitals-King's College Hospital (KCH) and Guys and St Thomas' Trust (GSTT). Various BERT-based models, including RoBERTa, BioBERT and RadBERT, underwent MLM on unlabelled reports from these centres. The downstream tasks were binary abnormality classification and multi-label classification. Performances of models with and without hospital-specific domain adaptation were compared against each other and LLMs on internal (KCH) and external (GSTT) hold-out test sets. Model performances for binary classification were compared using 2-way and 1-way ANOVA.</p><p><strong>Results: </strong>All models that underwent hospital-specific domain adaptation performed better than their baseline counterparts (all p-values < 0.001). For binary classification, MLM on all available unlabelled reports (194,467 reports) yielded the highest balanced accuracies (KCH: mean 97.0 ± 0.4% (standard deviation), GSTT: 95.5 ± 1.0%), after which no differences between BERT-based models remained (1-way ANOVA, p-values > 0.05). There was a log-linear relationship between the number of reports and performance. LLama-3.0 70B was the best-performing LLM (KCH: 97.1%, GSTT: 94.0%). Multi-label classification demonstrated consistent performance improvements from MLM for all abnormality categories.</p><p><strong>Conclusion: </strong>Hospital-specific domain adaptation should be considered best practice when deploying BERT-based models in new clinical settings. When labelled data is scarce or unavailable, LLMs can serve as a viable alternative, assuming adequate computational power is accessible.</p><p><strong>Key points: </strong>Question BERT-based models can classify radiology reports, but it is unclear if there is any incremental benefit from additional hospital-specific domain adaptation. Findings Hospital-specific domain adaptation resulted in the highest BERT-based model accuracies and performance scaled log-linearly with the number of reports. Clinical relevance BERT-based models after hospital-specific domain adaptation achieve the best classification results provided sufficient high-quality training labels. When labelled data is scarce, LLMs such as Llama-3.0 70B are a viable alternative provided there are sufficient computational resources.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11500-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To determine the effectiveness of hospital-specific domain adaptation through masked language modelling (MLM) on BERT-based models' performance in classifying neuroradiology reports, and to compare these models with open-source large language models (LLMs).

Materials and methods: This retrospective study (2008-2019) utilised 126,556 and 86,032 MRI brain reports from two tertiary hospitals-King's College Hospital (KCH) and Guys and St Thomas' Trust (GSTT). Various BERT-based models, including RoBERTa, BioBERT and RadBERT, underwent MLM on unlabelled reports from these centres. The downstream tasks were binary abnormality classification and multi-label classification. Performances of models with and without hospital-specific domain adaptation were compared against each other and LLMs on internal (KCH) and external (GSTT) hold-out test sets. Model performances for binary classification were compared using 2-way and 1-way ANOVA.

Results: All models that underwent hospital-specific domain adaptation performed better than their baseline counterparts (all p-values < 0.001). For binary classification, MLM on all available unlabelled reports (194,467 reports) yielded the highest balanced accuracies (KCH: mean 97.0 ± 0.4% (standard deviation), GSTT: 95.5 ± 1.0%), after which no differences between BERT-based models remained (1-way ANOVA, p-values > 0.05). There was a log-linear relationship between the number of reports and performance. LLama-3.0 70B was the best-performing LLM (KCH: 97.1%, GSTT: 94.0%). Multi-label classification demonstrated consistent performance improvements from MLM for all abnormality categories.

Conclusion: Hospital-specific domain adaptation should be considered best practice when deploying BERT-based models in new clinical settings. When labelled data is scarce or unavailable, LLMs can serve as a viable alternative, assuming adequate computational power is accessible.

Key points: Question BERT-based models can classify radiology reports, but it is unclear if there is any incremental benefit from additional hospital-specific domain adaptation. Findings Hospital-specific domain adaptation resulted in the highest BERT-based model accuracies and performance scaled log-linearly with the number of reports. Clinical relevance BERT-based models after hospital-specific domain adaptation achieve the best classification results provided sufficient high-quality training labels. When labelled data is scarce, LLMs such as Llama-3.0 70B are a viable alternative provided there are sufficient computational resources.

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology
European Radiology 医学-核医学
CiteScore
11.60
自引率
8.50%
发文量
874
审稿时长
2-4 weeks
期刊介绍: European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field. This is the Journal of the European Society of Radiology, and the official journal of a number of societies. From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信