Taehee Lee, Jong Hyuk Lee, Soon Ho Yoon, Seong Ho Park, Hyungjin Kim
{"title":"Availability and transparency of artificial intelligence models in radiology: a meta-research study.","authors":"Taehee Lee, Jong Hyuk Lee, Soon Ho Yoon, Seong Ho Park, Hyungjin Kim","doi":"10.1007/s00330-025-11492-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This meta-research study explored the availability of artificial intelligence (AI) models from development studies published in leading radiology journals in 2022, with availability defined as the transparent reporting of relevant technical details, such as model architecture and weights, necessary for independent replication.</p><p><strong>Materials and methods: </strong>A systematic search of Ovid Medline and Embase was conducted to identify AI model development studies published in five leading radiology journals in 2022. Data were extracted on study characteristics, model details, and code and model-sharing practices. The proportion of AI studies sharing their models was analyzed. Logistic regression analyses were employed to explore associations between study characteristics and model availability.</p><p><strong>Results: </strong>Of 268 studies reviewed, 39.9% (n = 107) made their models available. Deep learning (DL) models exhibited particularly low availability, with only 11.5% (n = 13) of the 113 studies being fully available. Training codes for DL models were provided in 22.1% (n = 25), suggesting limited ability to train DL models with one's own data. Multivariable logistic regression analysis showed that the use of traditional regression-based models (odds ratio [OR], 17.11; 95% CI: 5.52, 53.05; p < 0.001) was associated with higher availability, while the radiomics package usage (OR, 0.27; 95% CI: 0.11, 0.65; p = 0.003) was associated with lower availability.</p><p><strong>Conclusion: </strong>The availability of AI models in radiology publications remains suboptimal, especially for DL models. Enforcing model-sharing policies, enhancing external validation platforms, addressing commercial restrictions, and providing demos for commercial models in open repositories are necessary to improve transparency and replicability in radiology AI research.</p><p><strong>Key points: </strong>Question The study addresses the limited availability of AI models in radiology, especially DL models, which impacts external validation and clinical reliability. Findings Only 39.9% of radiology AI studies made their models available, with DL models showing particularly low availability at 11.5%. Clinical relevance Improving the availability of radiology AI models is essential for enabling external validation, ensuring reliable clinical application, and advancing patient care by fostering robust and transparent AI systems.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11492-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This meta-research study explored the availability of artificial intelligence (AI) models from development studies published in leading radiology journals in 2022, with availability defined as the transparent reporting of relevant technical details, such as model architecture and weights, necessary for independent replication.
Materials and methods: A systematic search of Ovid Medline and Embase was conducted to identify AI model development studies published in five leading radiology journals in 2022. Data were extracted on study characteristics, model details, and code and model-sharing practices. The proportion of AI studies sharing their models was analyzed. Logistic regression analyses were employed to explore associations between study characteristics and model availability.
Results: Of 268 studies reviewed, 39.9% (n = 107) made their models available. Deep learning (DL) models exhibited particularly low availability, with only 11.5% (n = 13) of the 113 studies being fully available. Training codes for DL models were provided in 22.1% (n = 25), suggesting limited ability to train DL models with one's own data. Multivariable logistic regression analysis showed that the use of traditional regression-based models (odds ratio [OR], 17.11; 95% CI: 5.52, 53.05; p < 0.001) was associated with higher availability, while the radiomics package usage (OR, 0.27; 95% CI: 0.11, 0.65; p = 0.003) was associated with lower availability.
Conclusion: The availability of AI models in radiology publications remains suboptimal, especially for DL models. Enforcing model-sharing policies, enhancing external validation platforms, addressing commercial restrictions, and providing demos for commercial models in open repositories are necessary to improve transparency and replicability in radiology AI research.
Key points: Question The study addresses the limited availability of AI models in radiology, especially DL models, which impacts external validation and clinical reliability. Findings Only 39.9% of radiology AI studies made their models available, with DL models showing particularly low availability at 11.5%. Clinical relevance Improving the availability of radiology AI models is essential for enabling external validation, ensuring reliable clinical application, and advancing patient care by fostering robust and transparent AI systems.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.