Availability and transparency of artificial intelligence models in radiology: a meta-research study.

IF 4.7 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Taehee Lee, Jong Hyuk Lee, Soon Ho Yoon, Seong Ho Park, Hyungjin Kim
{"title":"Availability and transparency of artificial intelligence models in radiology: a meta-research study.","authors":"Taehee Lee, Jong Hyuk Lee, Soon Ho Yoon, Seong Ho Park, Hyungjin Kim","doi":"10.1007/s00330-025-11492-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This meta-research study explored the availability of artificial intelligence (AI) models from development studies published in leading radiology journals in 2022, with availability defined as the transparent reporting of relevant technical details, such as model architecture and weights, necessary for independent replication.</p><p><strong>Materials and methods: </strong>A systematic search of Ovid Medline and Embase was conducted to identify AI model development studies published in five leading radiology journals in 2022. Data were extracted on study characteristics, model details, and code and model-sharing practices. The proportion of AI studies sharing their models was analyzed. Logistic regression analyses were employed to explore associations between study characteristics and model availability.</p><p><strong>Results: </strong>Of 268 studies reviewed, 39.9% (n = 107) made their models available. Deep learning (DL) models exhibited particularly low availability, with only 11.5% (n = 13) of the 113 studies being fully available. Training codes for DL models were provided in 22.1% (n = 25), suggesting limited ability to train DL models with one's own data. Multivariable logistic regression analysis showed that the use of traditional regression-based models (odds ratio [OR], 17.11; 95% CI: 5.52, 53.05; p < 0.001) was associated with higher availability, while the radiomics package usage (OR, 0.27; 95% CI: 0.11, 0.65; p = 0.003) was associated with lower availability.</p><p><strong>Conclusion: </strong>The availability of AI models in radiology publications remains suboptimal, especially for DL models. Enforcing model-sharing policies, enhancing external validation platforms, addressing commercial restrictions, and providing demos for commercial models in open repositories are necessary to improve transparency and replicability in radiology AI research.</p><p><strong>Key points: </strong>Question The study addresses the limited availability of AI models in radiology, especially DL models, which impacts external validation and clinical reliability. Findings Only 39.9% of radiology AI studies made their models available, with DL models showing particularly low availability at 11.5%. Clinical relevance Improving the availability of radiology AI models is essential for enabling external validation, ensuring reliable clinical application, and advancing patient care by fostering robust and transparent AI systems.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11492-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This meta-research study explored the availability of artificial intelligence (AI) models from development studies published in leading radiology journals in 2022, with availability defined as the transparent reporting of relevant technical details, such as model architecture and weights, necessary for independent replication.

Materials and methods: A systematic search of Ovid Medline and Embase was conducted to identify AI model development studies published in five leading radiology journals in 2022. Data were extracted on study characteristics, model details, and code and model-sharing practices. The proportion of AI studies sharing their models was analyzed. Logistic regression analyses were employed to explore associations between study characteristics and model availability.

Results: Of 268 studies reviewed, 39.9% (n = 107) made their models available. Deep learning (DL) models exhibited particularly low availability, with only 11.5% (n = 13) of the 113 studies being fully available. Training codes for DL models were provided in 22.1% (n = 25), suggesting limited ability to train DL models with one's own data. Multivariable logistic regression analysis showed that the use of traditional regression-based models (odds ratio [OR], 17.11; 95% CI: 5.52, 53.05; p < 0.001) was associated with higher availability, while the radiomics package usage (OR, 0.27; 95% CI: 0.11, 0.65; p = 0.003) was associated with lower availability.

Conclusion: The availability of AI models in radiology publications remains suboptimal, especially for DL models. Enforcing model-sharing policies, enhancing external validation platforms, addressing commercial restrictions, and providing demos for commercial models in open repositories are necessary to improve transparency and replicability in radiology AI research.

Key points: Question The study addresses the limited availability of AI models in radiology, especially DL models, which impacts external validation and clinical reliability. Findings Only 39.9% of radiology AI studies made their models available, with DL models showing particularly low availability at 11.5%. Clinical relevance Improving the availability of radiology AI models is essential for enabling external validation, ensuring reliable clinical application, and advancing patient care by fostering robust and transparent AI systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology
European Radiology 医学-核医学
CiteScore
11.60
自引率
8.50%
发文量
874
审稿时长
2-4 weeks
期刊介绍: European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field. This is the Journal of the European Society of Radiology, and the official journal of a number of societies. From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信