A novel predefined-time projective synchronization strategy for multi-modal memristive neural networks.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-03-15 DOI:10.1007/s11571-025-10234-0
Hui Zhao, Lei Zhou, Aidi Liu, Sijie Niu, Xizhan Gao, Xiju Zong, Xin Li, Lixiang Li
{"title":"A novel predefined-time projective synchronization strategy for multi-modal memristive neural networks.","authors":"Hui Zhao, Lei Zhou, Aidi Liu, Sijie Niu, Xizhan Gao, Xiju Zong, Xin Li, Lixiang Li","doi":"10.1007/s11571-025-10234-0","DOIUrl":null,"url":null,"abstract":"<p><p>Due to its complexity, the problem of predefined-time synchronization in multimodal memristive neural networks has rarely been explored in the literature. This paper is the first to systematically study this issue, filling a research gap in the field and further enriching the related theoretical framework. First, a novel predefined-time stability theorem is proposed, which features more lenient judgment conditions compared to existing methods. This significantly enhances the generality of the stability theorem, making it applicable to a wider range of practical engineering projects. Second, based on the proposed predefined-time stability theorem, as well as the theories of differential inclusion, Filippov solutions, and set-valued mapping, a simple and practical feedback controller is developed. This controller establishes the necessary criteria for achieving predefined-time projective synchronization in multimodal memristive neural networks. Finally, two intricate simulation experiments are carefully designed. These experiments validate the effectiveness and feasibility of the theoretical derivations presented in this paper.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"50"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910476/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10234-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its complexity, the problem of predefined-time synchronization in multimodal memristive neural networks has rarely been explored in the literature. This paper is the first to systematically study this issue, filling a research gap in the field and further enriching the related theoretical framework. First, a novel predefined-time stability theorem is proposed, which features more lenient judgment conditions compared to existing methods. This significantly enhances the generality of the stability theorem, making it applicable to a wider range of practical engineering projects. Second, based on the proposed predefined-time stability theorem, as well as the theories of differential inclusion, Filippov solutions, and set-valued mapping, a simple and practical feedback controller is developed. This controller establishes the necessary criteria for achieving predefined-time projective synchronization in multimodal memristive neural networks. Finally, two intricate simulation experiments are carefully designed. These experiments validate the effectiveness and feasibility of the theoretical derivations presented in this paper.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信