A novel optimized orthotopic mouse model for brain metastasis with sustained cerebral blood circulation and capability of multiple delivery.

IF 4.2 3区 医学 Q2 ONCOLOGY
Zihao Liu, Huisheng Song, Zhenning Wang, Yang Hu, Xiaoxuan Zhong, Huiling Liu, Jianhao Zeng, Zhiming Ye, Wenfeng Ning, Yizhi Liang, Shengfang Yuan, Zijun Deng, Long Jin, Jieying Mo, Jiaoyan Ren, Maojin Yao
{"title":"A novel optimized orthotopic mouse model for brain metastasis with sustained cerebral blood circulation and capability of multiple delivery.","authors":"Zihao Liu, Huisheng Song, Zhenning Wang, Yang Hu, Xiaoxuan Zhong, Huiling Liu, Jianhao Zeng, Zhiming Ye, Wenfeng Ning, Yizhi Liang, Shengfang Yuan, Zijun Deng, Long Jin, Jieying Mo, Jiaoyan Ren, Maojin Yao","doi":"10.1007/s10585-025-10336-3","DOIUrl":null,"url":null,"abstract":"<p><p>Brain metastasis is thought to be related to the high mortality and poor prognosis of lung cancer. Despite significant advances in the treatment of primary lung cancer, the unique microenvironment of the brain renders current therapeutic strategies largely ineffective against brain metastasis. The lack of effective drugs for brain metastasis treatment is primarily due to the incomplete understanding of the mechanisms underlying its initiation and progression. Currently, our understanding of brain metastasis remains limited, primarily due to the absence of appropriate models that can realistically simulate the entire process of tumor cell detachment from the primary site, circulation through the bloodstream, and eventual colonization of the brain. Therefore, there is a pressing need to develop more suitable lung cancer brain metastasis models that can effectively replicate these critical stages of metastasis. Here, based on the traditional carotid artery injection model, we established a novel orthotopic mouse model by using a light-controlled hydrogel to repair the puncture site on the carotid artery, with sustained cerebral blood circulation and the capability of multiple delivery cancer cell to mimic lung cancer brain metastasis. The optimized orthotopic mouse model significantly reduced cerebral ischemia and improved cerebral oxygenation by 60% compared to the traditional orthotopic mouse model, enhancing post-operative survival rates. It also showed a reduction in pro-inflammatory cytokines and featured less inflammatory and more resting states of microglial and astrocyte cells. Furthermore, the optimized orthotopic mouse model markedly increased the success rate and absolute number of the metastatic clones in the brain. Additionally, the multiple delivery model based on the optimized orthotopic mouse model substantially augmented the tumor clone number and formation rates compared to single injection in the optimized orthotopic mouse model. This model overcomes previous limitations by maintaining cerebral circulation, providing a more accurate simulation of the continuous entry of tumor cells into cerebral circulation. It offers a robust platform for studying the interactions of cancer cells with the brain microenvironment and testing new therapeutic approaches.</p>","PeriodicalId":10267,"journal":{"name":"Clinical & Experimental Metastasis","volume":"42 3","pages":"19"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Experimental Metastasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10585-025-10336-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Brain metastasis is thought to be related to the high mortality and poor prognosis of lung cancer. Despite significant advances in the treatment of primary lung cancer, the unique microenvironment of the brain renders current therapeutic strategies largely ineffective against brain metastasis. The lack of effective drugs for brain metastasis treatment is primarily due to the incomplete understanding of the mechanisms underlying its initiation and progression. Currently, our understanding of brain metastasis remains limited, primarily due to the absence of appropriate models that can realistically simulate the entire process of tumor cell detachment from the primary site, circulation through the bloodstream, and eventual colonization of the brain. Therefore, there is a pressing need to develop more suitable lung cancer brain metastasis models that can effectively replicate these critical stages of metastasis. Here, based on the traditional carotid artery injection model, we established a novel orthotopic mouse model by using a light-controlled hydrogel to repair the puncture site on the carotid artery, with sustained cerebral blood circulation and the capability of multiple delivery cancer cell to mimic lung cancer brain metastasis. The optimized orthotopic mouse model significantly reduced cerebral ischemia and improved cerebral oxygenation by 60% compared to the traditional orthotopic mouse model, enhancing post-operative survival rates. It also showed a reduction in pro-inflammatory cytokines and featured less inflammatory and more resting states of microglial and astrocyte cells. Furthermore, the optimized orthotopic mouse model markedly increased the success rate and absolute number of the metastatic clones in the brain. Additionally, the multiple delivery model based on the optimized orthotopic mouse model substantially augmented the tumor clone number and formation rates compared to single injection in the optimized orthotopic mouse model. This model overcomes previous limitations by maintaining cerebral circulation, providing a more accurate simulation of the continuous entry of tumor cells into cerebral circulation. It offers a robust platform for studying the interactions of cancer cells with the brain microenvironment and testing new therapeutic approaches.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal''s scope encompasses all aspects of metastasis research, whether laboratory-based, experimental or clinical and therapeutic. It covers such areas as molecular biology, pharmacology, tumor biology, and clinical cancer treatment (with all its subdivisions of surgery, chemotherapy and radio-therapy as well as pathology and epidemiology) insofar as these disciplines are concerned with the Journal''s core subject of metastasis formation, prevention and treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信