Analysis Method of Real-World Digital Biomarkers for Clinical Impact in Cancer Patients.

Q1 Computer Science
Digital Biomarkers Pub Date : 2025-02-03 eCollection Date: 2025-01-01 DOI:10.1159/000543898
Ingrid Oakley-Girvan, Yaya Zhai, Reem Yunis, Raymond Liu, Sharon W Davis, Ai Kubo, Sara Aghaee, Jennifer M Blankenship, Kate Lyden, Elad Neeman
{"title":"Analysis Method of Real-World Digital Biomarkers for Clinical Impact in Cancer Patients.","authors":"Ingrid Oakley-Girvan, Yaya Zhai, Reem Yunis, Raymond Liu, Sharon W Davis, Ai Kubo, Sara Aghaee, Jennifer M Blankenship, Kate Lyden, Elad Neeman","doi":"10.1159/000543898","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Wearable technologies can enhance measurements completed from home by participants in decentralized clinical trials. These measurements have shown promise in monitoring patient wellness outside the clinical setting. However, there are challenges in handling data and its interpretation when using consumer wearables, requiring input from statisticians and data scientists. This article describes three methods to estimate daily steps to address gaps in data from the Apple Watch in cancer patients and uses one of these methods in an analysis of the association between daily step count estimates and clinical events for these patients.</p><p><strong>Methods: </strong>A cohort of 50 cancer patients used the DigiBioMarC app integrated with an Apple Watch for 28 days. We identified different gap types in watch data based on their length and context to estimate daily steps. Cox proportional hazards regression models were used to determine the association between step count and time to death or time to first clinical event. Decision tree modeling and participant clustering were also employed to identify digital biomarkers of physical activity that were predictive of clinical event occurrence and hazard ratio to clinical events, respectively.</p><p><strong>Results: </strong>Among the three methods explored to address missing steps, the method that identified different step data gap types according to their duration and context yielded the most reasonable estimate of daily steps. Ten hours of waking time was used to differentiate between sufficient and insufficient measurement days. Daily step count on sufficient days was the most promising predictor of time to first clinical event (<i>p</i> = 0.068). This finding was consistent with participant clustering and decision tree analyses, where the participant clusters emerged naturally based on different levels of daily steps, and the group with the highest steps on sufficient days had the lowest hazard probability of mortality and clinical events. Additionally, daily steps on sufficient days can also be used as a predictor of whether a participant will have clinical events with an accuracy of 83.3%.</p><p><strong>Conclusion: </strong>We have developed an effective way to estimate daily steps of consumer wearable data containing unknown data gaps. Daily step counts on days with sufficient sampling are a strong predictor of the timing and occurrence of clinical events, with individuals exhibiting higher daily step counts having reduced hazard of death or clinical events.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"9 1","pages":"40-51"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000543898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Wearable technologies can enhance measurements completed from home by participants in decentralized clinical trials. These measurements have shown promise in monitoring patient wellness outside the clinical setting. However, there are challenges in handling data and its interpretation when using consumer wearables, requiring input from statisticians and data scientists. This article describes three methods to estimate daily steps to address gaps in data from the Apple Watch in cancer patients and uses one of these methods in an analysis of the association between daily step count estimates and clinical events for these patients.

Methods: A cohort of 50 cancer patients used the DigiBioMarC app integrated with an Apple Watch for 28 days. We identified different gap types in watch data based on their length and context to estimate daily steps. Cox proportional hazards regression models were used to determine the association between step count and time to death or time to first clinical event. Decision tree modeling and participant clustering were also employed to identify digital biomarkers of physical activity that were predictive of clinical event occurrence and hazard ratio to clinical events, respectively.

Results: Among the three methods explored to address missing steps, the method that identified different step data gap types according to their duration and context yielded the most reasonable estimate of daily steps. Ten hours of waking time was used to differentiate between sufficient and insufficient measurement days. Daily step count on sufficient days was the most promising predictor of time to first clinical event (p = 0.068). This finding was consistent with participant clustering and decision tree analyses, where the participant clusters emerged naturally based on different levels of daily steps, and the group with the highest steps on sufficient days had the lowest hazard probability of mortality and clinical events. Additionally, daily steps on sufficient days can also be used as a predictor of whether a participant will have clinical events with an accuracy of 83.3%.

Conclusion: We have developed an effective way to estimate daily steps of consumer wearable data containing unknown data gaps. Daily step counts on days with sufficient sampling are a strong predictor of the timing and occurrence of clinical events, with individuals exhibiting higher daily step counts having reduced hazard of death or clinical events.

真实世界数字生物标志物对癌症患者临床影响的分析方法。
简介:可穿戴技术可以增强分散临床试验参与者在家完成的测量。这些测量显示了在临床环境之外监测病人健康的希望。然而,在使用消费者可穿戴设备时,在处理数据和解释数据方面存在挑战,需要统计学家和数据科学家的输入。本文描述了三种方法来估计每日步数,以解决癌症患者Apple Watch数据的差距,并使用其中一种方法来分析这些患者每日步数估计与临床事件之间的关系。方法:50名癌症患者使用与苹果手表集成的DigiBioMarC应用程序28天。我们根据手表数据的长度和上下文确定了不同的间隙类型,以估计每天的步数。采用Cox比例风险回归模型确定步数与死亡时间或首次临床事件发生时间之间的关系。决策树模型和参与者聚类也分别用于识别预测临床事件发生和临床事件风险比的体育活动数字生物标志物。结果:在探索的三种方法中,根据其持续时间和上下文识别不同步骤数据缺口类型的方法产生了最合理的每日步数估计。10小时的清醒时间被用来区分充分和不充分的测量日。足够天数的每日步数是到达首次临床事件时间的最有希望的预测因子(p = 0.068)。这一发现与参与者聚类和决策树分析相一致,其中参与者聚类是基于不同的每日步数自然出现的,在足够的天数中步数最高的组具有最低的死亡率和临床事件风险概率。此外,足够天数的每日步数也可用于预测参与者是否会出现临床事件,准确率为83.3%。结论:我们已经开发出一种有效的方法来估算包含未知数据缺口的消费者可穿戴数据的每日步数。在采样充足的日子里,每日步数是临床事件发生时间和发生的一个强有力的预测指标,表现出较高的每日步数的个体死亡或临床事件的风险降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Biomarkers
Digital Biomarkers Medicine-Medicine (miscellaneous)
CiteScore
10.60
自引率
0.00%
发文量
12
审稿时长
23 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信