Efficacy and mechanism of action of harmine derivative H-2-104 against Echinococcus granulosus infection in mice.

IF 2.3 2区 农林科学 Q1 VETERINARY SCIENCES
Huijing Gao, Qinwei Xu, Jiang Zhu, Kadierya Kuerban, Bei Chen, Jun Zhao, Kalibixiati Aimulajiang, Liang Teng
{"title":"Efficacy and mechanism of action of harmine derivative H-2-104 against Echinococcus granulosus infection in mice.","authors":"Huijing Gao, Qinwei Xu, Jiang Zhu, Kadierya Kuerban, Bei Chen, Jun Zhao, Kalibixiati Aimulajiang, Liang Teng","doi":"10.1186/s12917-025-04642-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cystic echinococcosis (CE) is a chronic zoonotic parasitic disease caused by the parasite Echinococcus granulosus (E. granulosus). Currently, pharmacologic treatments are limited to albendazole and mebendazole; however, these treatments are associated with significant side effects and limited therapeutic efficacy, highlighting the urgent need for the development of new drugs. Harmine (HM) has been reported to exhibit potent antiparasitic effects, although it is also accompanied by notable neurotoxicity. H-2-104, a derivative of HM obtained through structural modification of its parent nucleus, represents a promising candidate for further investigation. This study aims to assess the in vivo and in vitro efficacy of H-2-104 against E. granulosus and to elucidate the mechanism of action of H-2-104 against CE from a metabolomics perspective.</p><p><strong>Methods: </strong>In vitro pharmacodynamics experiments were conducted to assess the inhibitory activity of H-2-104 against E. granulosus protoscoleces (PSCs). Following this, a mouse model of E. granulosus infection was established to explore the inhibitory effects against E. granulosus of H-2-104 at low, medium, and high concentrations. Additionally, non-targeted metabolomic approaches were utilized to analyze the serum and liver samples from mice in the control group, model group, and H-2-104 treatment group with the aim of identifying relevant biomarkers and crucial metabolic pathways involved in the response to H-2-104 treatment.</p><p><strong>Results: </strong>The in vitro results demonstrated that H-2-104 exhibited significantly superior inhibitory activity against PSCs compared to harmine and albendazole. Morphological observations revealed marked alterations in the ultrastructural characteristics of PSCs treated with H-2-104. In vivo pharmacodynamic studies showed that H-2-104 at a dosage of 100 mg/kg exhibited the highest cyst inhibition rate, which was (73.60 ± 4.71)%. Metabolomics analysis revealed that 64 serum metabolites were significantly altered, primarily involving metabolic pathways such as necroptosis, linoleic acid metabolism, and phenylalanine metabolism. Additionally, 81 liver metabolites were identified with significant differences, mainly involving metabolic pathways like fructose and mannose metabolism, and glycerophospholipid metabolism.</p><p><strong>Conclusions: </strong>H-2-104 exhibits significant activity both in vitro and in vivo, suggesting its potential as a promising new drug for the treatment of CE. The anti-CE effects of H-2-104 may be attributed to its regulation of multiple biological pathways, including cell apoptosis, amino acid metabolism, and glucose metabolism.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":"21 1","pages":"174"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912776/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-025-04642-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cystic echinococcosis (CE) is a chronic zoonotic parasitic disease caused by the parasite Echinococcus granulosus (E. granulosus). Currently, pharmacologic treatments are limited to albendazole and mebendazole; however, these treatments are associated with significant side effects and limited therapeutic efficacy, highlighting the urgent need for the development of new drugs. Harmine (HM) has been reported to exhibit potent antiparasitic effects, although it is also accompanied by notable neurotoxicity. H-2-104, a derivative of HM obtained through structural modification of its parent nucleus, represents a promising candidate for further investigation. This study aims to assess the in vivo and in vitro efficacy of H-2-104 against E. granulosus and to elucidate the mechanism of action of H-2-104 against CE from a metabolomics perspective.

Methods: In vitro pharmacodynamics experiments were conducted to assess the inhibitory activity of H-2-104 against E. granulosus protoscoleces (PSCs). Following this, a mouse model of E. granulosus infection was established to explore the inhibitory effects against E. granulosus of H-2-104 at low, medium, and high concentrations. Additionally, non-targeted metabolomic approaches were utilized to analyze the serum and liver samples from mice in the control group, model group, and H-2-104 treatment group with the aim of identifying relevant biomarkers and crucial metabolic pathways involved in the response to H-2-104 treatment.

Results: The in vitro results demonstrated that H-2-104 exhibited significantly superior inhibitory activity against PSCs compared to harmine and albendazole. Morphological observations revealed marked alterations in the ultrastructural characteristics of PSCs treated with H-2-104. In vivo pharmacodynamic studies showed that H-2-104 at a dosage of 100 mg/kg exhibited the highest cyst inhibition rate, which was (73.60 ± 4.71)%. Metabolomics analysis revealed that 64 serum metabolites were significantly altered, primarily involving metabolic pathways such as necroptosis, linoleic acid metabolism, and phenylalanine metabolism. Additionally, 81 liver metabolites were identified with significant differences, mainly involving metabolic pathways like fructose and mannose metabolism, and glycerophospholipid metabolism.

Conclusions: H-2-104 exhibits significant activity both in vitro and in vivo, suggesting its potential as a promising new drug for the treatment of CE. The anti-CE effects of H-2-104 may be attributed to its regulation of multiple biological pathways, including cell apoptosis, amino acid metabolism, and glucose metabolism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Veterinary Research
BMC Veterinary Research VETERINARY SCIENCES-
CiteScore
4.80
自引率
3.80%
发文量
420
审稿时长
3-6 weeks
期刊介绍: BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信