Bayesian nonparametric trees for principal causal effects.

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-01-07 DOI:10.1093/biomtc/ujaf024
Chanmin Kim, Corwin Zigler
{"title":"Bayesian nonparametric trees for principal causal effects.","authors":"Chanmin Kim, Corwin Zigler","doi":"10.1093/biomtc/ujaf024","DOIUrl":null,"url":null,"abstract":"<p><p>Principal stratification analysis evaluates how causal effects of a treatment on a primary outcome vary across strata of units defined by their treatment effect on some intermediate quantity. This endeavor is substantially challenged when the intermediate variable is continuously scaled and there are infinitely many basic principal strata. We employ a Bayesian nonparametric approach to flexibly evaluate treatment effects across flexibly modeled principal strata. The approach uses Bayesian Causal Forests (BCF) to simultaneously specify 2 Bayesian Additive Regression Tree models; one for the principal stratum membership and one for the outcome, conditional on principal strata. We show how the capability of BCF for capturing treatment effect heterogeneity is particularly relevant for assessing how treatment effects vary across the surface defined by continuously scaled principal strata, in addition to other benefits relating to targeted selection and regularization-induced confounding. The capabilities of the proposed approach are illustrated with a simulation study, and the methodology is deployed to investigate how causal effects of power plant emissions control technologies on ambient particulate pollution vary as a function of the technologies' impact on sulfur dioxide emissions.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911721/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Principal stratification analysis evaluates how causal effects of a treatment on a primary outcome vary across strata of units defined by their treatment effect on some intermediate quantity. This endeavor is substantially challenged when the intermediate variable is continuously scaled and there are infinitely many basic principal strata. We employ a Bayesian nonparametric approach to flexibly evaluate treatment effects across flexibly modeled principal strata. The approach uses Bayesian Causal Forests (BCF) to simultaneously specify 2 Bayesian Additive Regression Tree models; one for the principal stratum membership and one for the outcome, conditional on principal strata. We show how the capability of BCF for capturing treatment effect heterogeneity is particularly relevant for assessing how treatment effects vary across the surface defined by continuously scaled principal strata, in addition to other benefits relating to targeted selection and regularization-induced confounding. The capabilities of the proposed approach are illustrated with a simulation study, and the methodology is deployed to investigate how causal effects of power plant emissions control technologies on ambient particulate pollution vary as a function of the technologies' impact on sulfur dioxide emissions.

主要因果效应的贝叶斯非参数树。
主分层分析评估一种治疗对主要结果的因果效应如何在不同的单位分层中变化,这些单位由它们对某些中间量的治疗效果定义。当中间变量连续缩放并且存在无限多的基本主层时,这种努力就受到了极大的挑战。我们采用贝叶斯非参数方法灵活地评估跨灵活建模主层的处理效果。该方法使用贝叶斯因果森林(BCF)同时指定2个贝叶斯加性回归树模型;一个是主要地层成员,另一个是结果,以主要地层为条件。我们展示了BCF捕获处理效果异质性的能力如何与评估处理效果在由连续缩放的主要地层定义的表面上的变化特别相关,以及与目标选择和正则化诱导混淆相关的其他好处。通过模拟研究说明了所提出方法的能力,并部署了该方法来调查发电厂排放控制技术对环境颗粒污染的因果效应如何随技术对二氧化硫排放的影响而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信