Quinoline conjugates for enhanced antimalarial activity: a review on synthesis by molecular hybridization and structure-activity relationship (SAR) investigation.

IF 1.7 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
American journal of translational research Pub Date : 2025-02-15 eCollection Date: 2025-01-01 DOI:10.62347/TTHX6526
Shashidhar Bharadwaj Srinivasa, Sakshi Naveen Ullal, Bhuvanesh Sukhlal Kalal
{"title":"Quinoline conjugates for enhanced antimalarial activity: a review on synthesis by molecular hybridization and structure-activity relationship (SAR) investigation.","authors":"Shashidhar Bharadwaj Srinivasa, Sakshi Naveen Ullal, Bhuvanesh Sukhlal Kalal","doi":"10.62347/TTHX6526","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria, caused by the various <i>Plasmodium falciparum</i> strains, has been one of the deadliest diseases spread across the world. Over the years, several researchers have been employed to analyse molecular hybridization techniques for the synthesis of combination drugs to overcome the resistance gained by the parasite against the existing drugs. Hence, some of the significant contributions since 2019 till date have been summarised in the present review. Based on structure, the hybrids have been classified into bi-pharmacophores - having two pharmacologically active groups, tri-pharmacophores - having three pharmacologically active groups, metal-based and other miscellaneous hybrids. A thorough study of existing molecules could also reveal new leads for the development of anti-malarial agents with efficacy better than the preceding ones.</p>","PeriodicalId":7731,"journal":{"name":"American journal of translational research","volume":"17 2","pages":"1335-1375"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of translational research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/TTHX6526","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria, caused by the various Plasmodium falciparum strains, has been one of the deadliest diseases spread across the world. Over the years, several researchers have been employed to analyse molecular hybridization techniques for the synthesis of combination drugs to overcome the resistance gained by the parasite against the existing drugs. Hence, some of the significant contributions since 2019 till date have been summarised in the present review. Based on structure, the hybrids have been classified into bi-pharmacophores - having two pharmacologically active groups, tri-pharmacophores - having three pharmacologically active groups, metal-based and other miscellaneous hybrids. A thorough study of existing molecules could also reveal new leads for the development of anti-malarial agents with efficacy better than the preceding ones.

求助全文
约1分钟内获得全文 求助全文
来源期刊
American journal of translational research
American journal of translational research ONCOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
自引率
0.00%
发文量
552
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信