Quinoline conjugates for enhanced antimalarial activity: a review on synthesis by molecular hybridization and structure-activity relationship (SAR) investigation.
{"title":"Quinoline conjugates for enhanced antimalarial activity: a review on synthesis by molecular hybridization and structure-activity relationship (SAR) investigation.","authors":"Shashidhar Bharadwaj Srinivasa, Sakshi Naveen Ullal, Bhuvanesh Sukhlal Kalal","doi":"10.62347/TTHX6526","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria, caused by the various <i>Plasmodium falciparum</i> strains, has been one of the deadliest diseases spread across the world. Over the years, several researchers have been employed to analyse molecular hybridization techniques for the synthesis of combination drugs to overcome the resistance gained by the parasite against the existing drugs. Hence, some of the significant contributions since 2019 till date have been summarised in the present review. Based on structure, the hybrids have been classified into bi-pharmacophores - having two pharmacologically active groups, tri-pharmacophores - having three pharmacologically active groups, metal-based and other miscellaneous hybrids. A thorough study of existing molecules could also reveal new leads for the development of anti-malarial agents with efficacy better than the preceding ones.</p>","PeriodicalId":7731,"journal":{"name":"American journal of translational research","volume":"17 2","pages":"1335-1375"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of translational research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/TTHX6526","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria, caused by the various Plasmodium falciparum strains, has been one of the deadliest diseases spread across the world. Over the years, several researchers have been employed to analyse molecular hybridization techniques for the synthesis of combination drugs to overcome the resistance gained by the parasite against the existing drugs. Hence, some of the significant contributions since 2019 till date have been summarised in the present review. Based on structure, the hybrids have been classified into bi-pharmacophores - having two pharmacologically active groups, tri-pharmacophores - having three pharmacologically active groups, metal-based and other miscellaneous hybrids. A thorough study of existing molecules could also reveal new leads for the development of anti-malarial agents with efficacy better than the preceding ones.