Short-term sustained hypoxia distinctly affects subpopulations of carotid body glomus cells from rats.

IF 5 2区 生物学 Q2 CELL BIOLOGY
Pedro F Spiller, Henrique J N Morgan, Luiz C C Navegantes, Benedito H Machado, Melina P da Silva, Davi J A Moraes
{"title":"Short-term sustained hypoxia distinctly affects subpopulations of carotid body glomus cells from rats.","authors":"Pedro F Spiller, Henrique J N Morgan, Luiz C C Navegantes, Benedito H Machado, Melina P da Silva, Davi J A Moraes","doi":"10.1152/ajpcell.00967.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The main O<sub>2</sub> arterial chemoreceptors are the carotid bodies (CBs), which mediate hyperventilation in response to short-term sustained hypoxia (SH). CBs contain glomus cells expressing K<sup>+</sup> channels, which are inhibited by hypoxia, leading to the neurotransmitters release. ATP released by CBs glomus cells and type II cells has been considered essential for chemosensory processing under physiological and pathophysiological conditions. Although the systemic effects of chronic activation of CBs by SH are well known, the early (first 24 hours) cellular and molecular mechanisms (first 24 hours) in CBs, as well as the effects of short-term SH on populations of glomus cell are still poorly understood. Herein, we show that SH (10% O<sub>2</sub> for 24 hours) depolarizes the membrane potential of one population of glomus cells, mediated by increases in inward current, but does not affect the ATP release by CBs. In addition, SH promotes a reduction in their maximum outward current, mediated by voltage-gated K<sup>+</sup> channels. SH also affected sensitivity to acute hypoxia in the two glomus cell subpopulations differently. As for the content of mitochondrial proteins, we observed increases in the citrate synthase, Tom-20 and succinate dehydrogenase (mitochondrial complex II) per cell of CBs after SH. Our results demonstrate important cellular and molecular mechanisms of plasticity in CBs from rats after only 24 hours of SH, which may contribute to the generation of cardiovascular and ventilatory adjustments observed in this experimental model.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00967.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The main O2 arterial chemoreceptors are the carotid bodies (CBs), which mediate hyperventilation in response to short-term sustained hypoxia (SH). CBs contain glomus cells expressing K+ channels, which are inhibited by hypoxia, leading to the neurotransmitters release. ATP released by CBs glomus cells and type II cells has been considered essential for chemosensory processing under physiological and pathophysiological conditions. Although the systemic effects of chronic activation of CBs by SH are well known, the early (first 24 hours) cellular and molecular mechanisms (first 24 hours) in CBs, as well as the effects of short-term SH on populations of glomus cell are still poorly understood. Herein, we show that SH (10% O2 for 24 hours) depolarizes the membrane potential of one population of glomus cells, mediated by increases in inward current, but does not affect the ATP release by CBs. In addition, SH promotes a reduction in their maximum outward current, mediated by voltage-gated K+ channels. SH also affected sensitivity to acute hypoxia in the two glomus cell subpopulations differently. As for the content of mitochondrial proteins, we observed increases in the citrate synthase, Tom-20 and succinate dehydrogenase (mitochondrial complex II) per cell of CBs after SH. Our results demonstrate important cellular and molecular mechanisms of plasticity in CBs from rats after only 24 hours of SH, which may contribute to the generation of cardiovascular and ventilatory adjustments observed in this experimental model.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信