TIGAR alleviates cognitive impairment in rats with chronic cerebral hypoperfusion by suppressing oxidative stress and pyroptosis.

IF 1.7 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
American journal of translational research Pub Date : 2025-02-15 eCollection Date: 2025-01-01 DOI:10.62347/NWQS1671
Jie Xiao, Min Wu, Hailong Li, Shufan Zhang, Jing Deng, Bihua Wu
{"title":"TIGAR alleviates cognitive impairment in rats with chronic cerebral hypoperfusion by suppressing oxidative stress and pyroptosis.","authors":"Jie Xiao, Min Wu, Hailong Li, Shufan Zhang, Jing Deng, Bihua Wu","doi":"10.62347/NWQS1671","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It is postulated that oxidative stress and pyroptosis, which are induced by chronic cerebral hypoperfusion (CCH), contribute to the pathogenesis of vascular cognitive impairment (VCI). The protective role of TIGAR in neurologic illnesses has been the subject of extensive examination, yet its role in models of CCH-induced cognitive impairment remains unexplored. The objective of this study was to ascertain whether TIGAR is a neuroprotective agent in rats with CCH that reduces oxidative stress and pyroptosis.</p><p><strong>Methods: </strong>A CCH model was established in rats through the use of bilateral common carotid artery occlusion (BCCAO). The effects of TIGAR on cognitive function and anxiety-depressive behaviors in rats with CCH were examined. To this end, the Y-maze and open field tests were employed. Nissl and hematoxylin-eosin (H&E) staining were used to assess histologic changes in the CA1 area of the hippocampus. Hippocampal glutathione (GSH) activity, malondialdehyde (MDA) content, and NADPH/NADP+ ratio were measured using the WST-8 colorimetric method to assess oxidative stress. The expression of TIGAR and pyroptosis-related proteins was assessed by western blotting.</p><p><strong>Results: </strong>A model of CCH-induced cognitive impairment was successfully established. Four weeks after BCCAO, cerebral blood flow returned to normal in the rats, and cognitive impairment and anxiety-depression-like behavior developed. In rats with CCH, MDA levels increased, GSH activity and NADPH/NADP+ ratio decreased, and pyroptosis-related protein expression increased. The pathologic findings indicated that there was an exacerbation of neuronal injury in the CA1 area of the hippocampus and that the cells were loosely arranged. In rats with CCH, overexpression of TIGAR reduced pyroptosis-associated protein expression while increasing MDA content, GSH activity, and NADPH/NADP+ ratio. It promoted neuronal cell survival, and improved cognitive function and anxiety-depression-like behavior.</p><p><strong>Conclusion: </strong>Overexpression of TIGAR reduced CCH-induced oxidative stress and pyroptosis and ameliorated cognitive dysfunction and anxiety-depression-like behavior in rats. These findings suggest that TIGAR counteracts oxidative stress and prevents pyroptosis, making it a promising target for the treatment of VCI.</p>","PeriodicalId":7731,"journal":{"name":"American journal of translational research","volume":"17 2","pages":"1223-1236"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of translational research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/NWQS1671","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: It is postulated that oxidative stress and pyroptosis, which are induced by chronic cerebral hypoperfusion (CCH), contribute to the pathogenesis of vascular cognitive impairment (VCI). The protective role of TIGAR in neurologic illnesses has been the subject of extensive examination, yet its role in models of CCH-induced cognitive impairment remains unexplored. The objective of this study was to ascertain whether TIGAR is a neuroprotective agent in rats with CCH that reduces oxidative stress and pyroptosis.

Methods: A CCH model was established in rats through the use of bilateral common carotid artery occlusion (BCCAO). The effects of TIGAR on cognitive function and anxiety-depressive behaviors in rats with CCH were examined. To this end, the Y-maze and open field tests were employed. Nissl and hematoxylin-eosin (H&E) staining were used to assess histologic changes in the CA1 area of the hippocampus. Hippocampal glutathione (GSH) activity, malondialdehyde (MDA) content, and NADPH/NADP+ ratio were measured using the WST-8 colorimetric method to assess oxidative stress. The expression of TIGAR and pyroptosis-related proteins was assessed by western blotting.

Results: A model of CCH-induced cognitive impairment was successfully established. Four weeks after BCCAO, cerebral blood flow returned to normal in the rats, and cognitive impairment and anxiety-depression-like behavior developed. In rats with CCH, MDA levels increased, GSH activity and NADPH/NADP+ ratio decreased, and pyroptosis-related protein expression increased. The pathologic findings indicated that there was an exacerbation of neuronal injury in the CA1 area of the hippocampus and that the cells were loosely arranged. In rats with CCH, overexpression of TIGAR reduced pyroptosis-associated protein expression while increasing MDA content, GSH activity, and NADPH/NADP+ ratio. It promoted neuronal cell survival, and improved cognitive function and anxiety-depression-like behavior.

Conclusion: Overexpression of TIGAR reduced CCH-induced oxidative stress and pyroptosis and ameliorated cognitive dysfunction and anxiety-depression-like behavior in rats. These findings suggest that TIGAR counteracts oxidative stress and prevents pyroptosis, making it a promising target for the treatment of VCI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
American journal of translational research
American journal of translational research ONCOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
自引率
0.00%
发文量
552
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信