Recent Advances in Hydrogel-Based 3D Disease Modeling and Drug Screening Platforms.

4区 医学 Q2 Biochemistry, Genetics and Molecular Biology
Rumeysa Bilginer-Kartal, Başak Çoban, Özüm Yildirim-Semerci, Ahu Arslan-Yildiz
{"title":"Recent Advances in Hydrogel-Based 3D Disease Modeling and Drug Screening Platforms.","authors":"Rumeysa Bilginer-Kartal, Başak Çoban, Özüm Yildirim-Semerci, Ahu Arslan-Yildiz","doi":"10.1007/5584_2025_851","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) disease modeling and drug screening systems have become important in tissue engineering, drug screening, and development. The newly developed systems support cell and extracellular matrix (ECM) interactions, which are necessary for the formation of the tissue or an accurate model of a disease. Hydrogels are favorable biomaterials due to their properties: biocompatibility, high swelling capacity, tunable viscosity, mechanical properties, and their ability to biomimic the structure and function of ECM. They have been used to model various diseases such as tumors, cancer diseases, neurodegenerative diseases, cardiac diseases, and cardiovascular diseases. Additive manufacturing approaches, such as 3D printing/bioprinting, stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), enable the design of scaffolds with high precision; thus, increasing the accuracy of the disease models. In addition, the aforementioned methodologies improve the design of the hydrogel-based scaffolds, which resemble the complicated structure and intricate microenvironment of tissues or tumors, further advancing the development of therapeutic agents and strategies. Thus, 3D hydrogel-based disease models fabricated through additive manufacturing approaches provide an enhanced 3D microenvironment that empowers personalized medicine toward targeted therapeutics, in accordance with 3D drug screening platforms.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/5584_2025_851","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional (3D) disease modeling and drug screening systems have become important in tissue engineering, drug screening, and development. The newly developed systems support cell and extracellular matrix (ECM) interactions, which are necessary for the formation of the tissue or an accurate model of a disease. Hydrogels are favorable biomaterials due to their properties: biocompatibility, high swelling capacity, tunable viscosity, mechanical properties, and their ability to biomimic the structure and function of ECM. They have been used to model various diseases such as tumors, cancer diseases, neurodegenerative diseases, cardiac diseases, and cardiovascular diseases. Additive manufacturing approaches, such as 3D printing/bioprinting, stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), enable the design of scaffolds with high precision; thus, increasing the accuracy of the disease models. In addition, the aforementioned methodologies improve the design of the hydrogel-based scaffolds, which resemble the complicated structure and intricate microenvironment of tissues or tumors, further advancing the development of therapeutic agents and strategies. Thus, 3D hydrogel-based disease models fabricated through additive manufacturing approaches provide an enhanced 3D microenvironment that empowers personalized medicine toward targeted therapeutics, in accordance with 3D drug screening platforms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in experimental medicine and biology
Advances in experimental medicine and biology 医学-医学:研究与实验
CiteScore
5.90
自引率
0.00%
发文量
465
审稿时长
2-4 weeks
期刊介绍: Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信