Fostering kappa (κ)-carrageenan hydrogels with the power of a natural crosslinker: a comparison between tender coconut water and potassium chloride (KCl) for therapeutic applications.

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2025-04-01 Epub Date: 2025-03-14 DOI:10.1007/s13205-025-04254-0
Atharva Markale, Tarun Mateti, K Likhith, S Supriya Bhatt, K M Rajesh, Vishwanath Managuli, Manasa Nune, Ritu Raval, Pradeep Kumar, Goutam Thakur
{"title":"Fostering kappa (κ)-carrageenan hydrogels with the power of a natural crosslinker: a comparison between tender coconut water and potassium chloride (KCl) for therapeutic applications.","authors":"Atharva Markale, Tarun Mateti, K Likhith, S Supriya Bhatt, K M Rajesh, Vishwanath Managuli, Manasa Nune, Ritu Raval, Pradeep Kumar, Goutam Thakur","doi":"10.1007/s13205-025-04254-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the potential of tender coconut water as a natural alternative to potassium chloride (KCl) to crosslink κ-carrageenan hydrogels. κ-Carrageenan hydrogels crosslinked with tender coconut water, KCl, and their combination were formulated with diclofenac sodium as model drug, and their morphology, chemical bonding, compressive strength, water uptake capacity, degradation resistance, and cytotoxicity were assessed. The results showed that crosslinking κ-carrageenan hydrogels with both tender coconut water and KCl increased their compressive strength by up to 450%, provided excellent water retention capacity, and resulted in only 5% degradation after 20 days. Scanning electron microscopy revealed that crosslinking the hydrogel with both tender coconut water and KCl compacted its morphological structure, which remained biocompatible when tested with 3T3 cells. Infrared analysis confirmed that incorporated diclofenac sodium remained inert during preparation of the hydrogel matrices. Furthermore, the in vitro release behavior and antimicrobial properties of the hydrogels were assessed. The drug release profile from hydrogels crosslinked with both tender coconut water and KCl was sustained over 24 h. Such hydrogels also showed a unique antibacterial activity against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and <i>Escherichia coli</i> (<i>E. coli</i>)-with the activity against <i>E. coli</i> being more pronounced. In conclusion, these results confirm that crosslinking with tender coconut water and KCl is a superior alternative to just with KCl for κ-carrageenan hydrogels.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-025-04254-0.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 4","pages":"87"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908996/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-025-04254-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the potential of tender coconut water as a natural alternative to potassium chloride (KCl) to crosslink κ-carrageenan hydrogels. κ-Carrageenan hydrogels crosslinked with tender coconut water, KCl, and their combination were formulated with diclofenac sodium as model drug, and their morphology, chemical bonding, compressive strength, water uptake capacity, degradation resistance, and cytotoxicity were assessed. The results showed that crosslinking κ-carrageenan hydrogels with both tender coconut water and KCl increased their compressive strength by up to 450%, provided excellent water retention capacity, and resulted in only 5% degradation after 20 days. Scanning electron microscopy revealed that crosslinking the hydrogel with both tender coconut water and KCl compacted its morphological structure, which remained biocompatible when tested with 3T3 cells. Infrared analysis confirmed that incorporated diclofenac sodium remained inert during preparation of the hydrogel matrices. Furthermore, the in vitro release behavior and antimicrobial properties of the hydrogels were assessed. The drug release profile from hydrogels crosslinked with both tender coconut water and KCl was sustained over 24 h. Such hydrogels also showed a unique antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)-with the activity against E. coli being more pronounced. In conclusion, these results confirm that crosslinking with tender coconut water and KCl is a superior alternative to just with KCl for κ-carrageenan hydrogels.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-025-04254-0.

求助全文
约1分钟内获得全文 求助全文
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信