Boosting Ion Transport Kinetics in Sulfolane-Modified Aqueous Electrolytes for High-Performance Zinc-Ion Batteries with V₂C MXene Cathodes.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jenitha Moses, Naveen T Bharanitharan, Tharani Selvam, Durgalakshmi Dhinasekaran, Ashwin Kishore Munusamy Rajendran, Balakumar Subramanian, Ajay Rakkesh Rajendran
{"title":"Boosting Ion Transport Kinetics in Sulfolane-Modified Aqueous Electrolytes for High-Performance Zinc-Ion Batteries with V₂C MXene Cathodes.","authors":"Jenitha Moses, Naveen T Bharanitharan, Tharani Selvam, Durgalakshmi Dhinasekaran, Ashwin Kishore Munusamy Rajendran, Balakumar Subramanian, Ajay Rakkesh Rajendran","doi":"10.1002/smtd.202500028","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of zinc-ion batteries (ZIBs) is propelled by their inherent safety, cost-effectiveness, and environmental sustainability. This study investigates the role of sulfolane (SL), a polar aprotic solvent with a high dielectric constant, as an electrolyte additive to enhance ion transport and electrochemical performance in V₂C MXene cathodes for high-performance ZIBs. The addition of 1% SL optimizes Zn-ion transport by increasing ionic conductivity, suppressing electrolyte decomposition, and mitigating zinc dendrite formation. Galvanostatic Intermittent Titration Technique (GITT) analysis reveals a reduction in Zn<sup>2</sup>⁺ diffusion coefficient from 1.54 × 10⁻⁷ cm<sup>2</sup>/s in 2 m ZnSO₄ to 1.07 × 10⁻⁹ cm<sup>2</sup> s<sup>-1</sup> in the SL-modified system, indicating a more confined Zn<sup>2</sup>⁺ transport environment. Electrochemical Impedance Spectroscopy (EIS) further demonstrates a substantial decrease in activation energy from 123.78 to 65.08 kJ mol⁻¹, signifying improved charge transfer kinetics. Ex situ XRD confirms that SL stabilizes the phase transformation of V₂C to Zn₀.₂₉V₂O₅, enhancing structural integrity. The modified system achieves an impressive specific capacity of 545 mAh g⁻¹ at 0.5 A g⁻¹ and exhibits exceptional cycling stability, retaining 91% capacity over 7000 cycles at 20 A g⁻¹. These findings underscore the potential of sulfolane as a key additive for advancing V₂C MXene-based ZIBs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500028"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500028","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of zinc-ion batteries (ZIBs) is propelled by their inherent safety, cost-effectiveness, and environmental sustainability. This study investigates the role of sulfolane (SL), a polar aprotic solvent with a high dielectric constant, as an electrolyte additive to enhance ion transport and electrochemical performance in V₂C MXene cathodes for high-performance ZIBs. The addition of 1% SL optimizes Zn-ion transport by increasing ionic conductivity, suppressing electrolyte decomposition, and mitigating zinc dendrite formation. Galvanostatic Intermittent Titration Technique (GITT) analysis reveals a reduction in Zn2⁺ diffusion coefficient from 1.54 × 10⁻⁷ cm2/s in 2 m ZnSO₄ to 1.07 × 10⁻⁹ cm2 s-1 in the SL-modified system, indicating a more confined Zn2⁺ transport environment. Electrochemical Impedance Spectroscopy (EIS) further demonstrates a substantial decrease in activation energy from 123.78 to 65.08 kJ mol⁻¹, signifying improved charge transfer kinetics. Ex situ XRD confirms that SL stabilizes the phase transformation of V₂C to Zn₀.₂₉V₂O₅, enhancing structural integrity. The modified system achieves an impressive specific capacity of 545 mAh g⁻¹ at 0.5 A g⁻¹ and exhibits exceptional cycling stability, retaining 91% capacity over 7000 cycles at 20 A g⁻¹. These findings underscore the potential of sulfolane as a key additive for advancing V₂C MXene-based ZIBs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信