{"title":"Local Selection Shaped the Diversity of European Maize Landraces.","authors":"Margarita Takou, Kerstin Schulz, Markus G Stetter","doi":"10.1111/mec.17720","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of populations to novel environments can lead to a loss of genetic diversity and the accumulation of deleterious mutations due to selection and demographic changes. We investigate how the recent introduction of maize to Europe shaped the genetic diversity and differentiation of European traditional maize populations and quantify the impact of its recent range expansion and consecutive breeding on the accumulation of genetic load. We use genome-wide genetic markers of almost 2000 individuals from 38 landraces, 155 elite breeding lines, and a large set of doubled haploid lines derived from two landraces to find extensive population structure within European maize, with landraces being highly differentiated even over short geographic distances. Yet, diversity change does not follow the continuous pattern of range expansions. Landraces maintain high genetic diversity that is distinct between populations and does not decrease along the possible expansion routes. Signals of positive selection in European landraces that overlap with selection in Asian maize suggest convergent selection during maize introductions. At the same time, environmental factors partially explain genetic differences across Europe. Consistent with the maintenance of high diversity, we find no evidence of genetic load accumulating along the maize introduction route in European maize. However, modern breeding likely purged highly deleterious alleles but accumulated genetic load in elite germplasm. Our results reconstruct the history of maize in Europe and show that landraces have maintained high genetic diversity that could reduce genetic load in the European maize breeding pools.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17720"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17720","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of populations to novel environments can lead to a loss of genetic diversity and the accumulation of deleterious mutations due to selection and demographic changes. We investigate how the recent introduction of maize to Europe shaped the genetic diversity and differentiation of European traditional maize populations and quantify the impact of its recent range expansion and consecutive breeding on the accumulation of genetic load. We use genome-wide genetic markers of almost 2000 individuals from 38 landraces, 155 elite breeding lines, and a large set of doubled haploid lines derived from two landraces to find extensive population structure within European maize, with landraces being highly differentiated even over short geographic distances. Yet, diversity change does not follow the continuous pattern of range expansions. Landraces maintain high genetic diversity that is distinct between populations and does not decrease along the possible expansion routes. Signals of positive selection in European landraces that overlap with selection in Asian maize suggest convergent selection during maize introductions. At the same time, environmental factors partially explain genetic differences across Europe. Consistent with the maintenance of high diversity, we find no evidence of genetic load accumulating along the maize introduction route in European maize. However, modern breeding likely purged highly deleterious alleles but accumulated genetic load in elite germplasm. Our results reconstruct the history of maize in Europe and show that landraces have maintained high genetic diversity that could reduce genetic load in the European maize breeding pools.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms