Conventional versus AI-based spectral data processing and classification approaches to enhance LIBS's analytical performance†

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Zakaria E. Ahmed, Rania M. Abdelazeem, Mahmoud Abdelhamid, Zienab Abdel-Salam and Mohamed Abdel-Harith
{"title":"Conventional versus AI-based spectral data processing and classification approaches to enhance LIBS's analytical performance†","authors":"Zakaria E. Ahmed, Rania M. Abdelazeem, Mahmoud Abdelhamid, Zienab Abdel-Salam and Mohamed Abdel-Harith","doi":"10.1039/D5AY00027K","DOIUrl":null,"url":null,"abstract":"<p >Laser-Induced Breakdown Spectroscopy (LIBS) combined with Artificial Intelligence (AI) offers a powerful method for analyzing and comparing spectral data. This study presents a comparative analysis of conventional and AI-developed methods for processing and interpreting LIBS data, especially in forensic applications, focusing on toner sample discrimination. We propose a novel AI-developed approach that combines normalization, interpolation, and peak detection techniques to simplify LIBS spectral analysis without user preprocessing and easily identify unique spectral features. This method was compared with conventional principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), which are commonly used for LIBS data analysis. The AI-developed method demonstrated superior performance in discriminating between toner samples from various brands and models of printers and photocopiers. The quantitative evaluation of the performance of the AI-developed approach was performed using statistical analysis, including accuracy difference percentage, component-wise variance analysis, paired <em>t</em>-test, and cross-validation test. The results confirmed a significant improvement in accuracy with the AI-developed method compared to conventional approaches. This proposed work highlights the potential of AI in enhancing spectroscopic analysis for forensic applications, offering increased efficiency and accuracy in sample discrimination and classification. Additionally, it accelerates the analysis of LIBS data with no need for user preprocessing.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" 13","pages":" 2771-2782"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ay/d5ay00027k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-Induced Breakdown Spectroscopy (LIBS) combined with Artificial Intelligence (AI) offers a powerful method for analyzing and comparing spectral data. This study presents a comparative analysis of conventional and AI-developed methods for processing and interpreting LIBS data, especially in forensic applications, focusing on toner sample discrimination. We propose a novel AI-developed approach that combines normalization, interpolation, and peak detection techniques to simplify LIBS spectral analysis without user preprocessing and easily identify unique spectral features. This method was compared with conventional principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), which are commonly used for LIBS data analysis. The AI-developed method demonstrated superior performance in discriminating between toner samples from various brands and models of printers and photocopiers. The quantitative evaluation of the performance of the AI-developed approach was performed using statistical analysis, including accuracy difference percentage, component-wise variance analysis, paired t-test, and cross-validation test. The results confirmed a significant improvement in accuracy with the AI-developed method compared to conventional approaches. This proposed work highlights the potential of AI in enhancing spectroscopic analysis for forensic applications, offering increased efficiency and accuracy in sample discrimination and classification. Additionally, it accelerates the analysis of LIBS data with no need for user preprocessing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信