MGVB: a New Proteomics Toolset for Fast and Efficient Data Analysis.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Journal of Proteome Research Pub Date : 2025-04-04 Epub Date: 2025-03-16 DOI:10.1021/acs.jproteome.4c00994
Metodi V Metodiev
{"title":"MGVB: a New Proteomics Toolset for Fast and Efficient Data Analysis.","authors":"Metodi V Metodiev","doi":"10.1021/acs.jproteome.4c00994","DOIUrl":null,"url":null,"abstract":"<p><p>MGVB is a collection of tools for proteomics data analysis. It covers data processing from <i>in silico</i> digestion of protein sequences to comprehensive identification of post-translational modifications and solving the protein inference problem. The toolset is developed with efficiency in mind. It enables analysis at a fraction of the resources cost typically required by existing commercial and free tools. MGVB, as it is a native application, is faster than existing proteomics tools such as MaxQuant and, at the same time, finds very similar, in some cases even larger, numbers of peptides at a chosen level of statistical significance. It implements a probabilistic scoring function to match spectra to sequences, a novel combinatorial search strategy for finding post-translational modifications, and a Bayesian approach to locate modification sites. This report describes the algorithms behind the tools, presents benchmarking data sets analysis comparing MGVB performance to MaxQuant/Andromeda, and provides step by step instructions for using it in typical analytical scenarios.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"2181-2187"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00994","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

MGVB is a collection of tools for proteomics data analysis. It covers data processing from in silico digestion of protein sequences to comprehensive identification of post-translational modifications and solving the protein inference problem. The toolset is developed with efficiency in mind. It enables analysis at a fraction of the resources cost typically required by existing commercial and free tools. MGVB, as it is a native application, is faster than existing proteomics tools such as MaxQuant and, at the same time, finds very similar, in some cases even larger, numbers of peptides at a chosen level of statistical significance. It implements a probabilistic scoring function to match spectra to sequences, a novel combinatorial search strategy for finding post-translational modifications, and a Bayesian approach to locate modification sites. This report describes the algorithms behind the tools, presents benchmarking data sets analysis comparing MGVB performance to MaxQuant/Andromeda, and provides step by step instructions for using it in typical analytical scenarios.

MGVB:一个新的蛋白质组学工具集,用于快速有效的数据分析。
MGVB是一个用于蛋白质组学数据分析的工具集合。它涵盖了从蛋白质序列的计算机消化到翻译后修饰的综合鉴定和解决蛋白质推理问题的数据处理。该工具集的开发考虑到了效率。它能够以现有商业和免费工具通常所需的资源成本的一小部分进行分析。由于MGVB是一个本地应用程序,它比现有的蛋白质组学工具(如MaxQuant)更快,同时,在选择的统计显著性水平上,发现非常相似,在某些情况下甚至更多的肽。它实现了一种概率评分函数来匹配谱和序列,一种新的组合搜索策略来寻找翻译后修饰,以及一种贝叶斯方法来定位修饰位点。本报告描述了这些工具背后的算法,提供了将MGVB性能与MaxQuant/Andromeda进行比较的基准数据集分析,并提供了在典型分析场景中使用它的逐步说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信