Responsive Microneedles for Diagnostic and Therapeutic Applications of Ocular Diseases.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Baoyue Mi, Jingqing Mu, Xiangyu Ding, Shutao Guo, Xia Hua
{"title":"Responsive Microneedles for Diagnostic and Therapeutic Applications of Ocular Diseases.","authors":"Baoyue Mi, Jingqing Mu, Xiangyu Ding, Shutao Guo, Xia Hua","doi":"10.1002/smtd.202402048","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional ophthalmic formulations are characterized by low bioavailability, short intraocular retention time, strong irritation, and failure to achieve the expected therapeutic effect due to the special physiological structure of the eye and the existence of many barriers. Microneedle drug delivery is a novel transdermal drug delivery modality. Responsive microneedles are defined as controllably releasing the drug payloads in response to physiological stimuli, including pH levels, temperature, enzymes, and reactive oxygen species (ROS), as well as external stimuli such as magnetic fields and light. In addition to inheriting the advantages of traditional microneedles, which include enhanced targeting and permeability, non-invasiveness, and painless application, the integration with stimulus-responsive materials enables responsive microneedles to achieve a personalized precision drug delivery process, which further increases the accuracy and efficiency of ocular treatments, making on-demand drug delivery possible. This article systematically reviews the classification, mechanisms, and characteristics of responsive microneedles and provides a detailed introduction to their diagnostic and therapeutic applications as well as real-time monitoring potential in ocular diseases, aiming to offer insights for the precision treatment of ocular diseases in the future.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402048"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402048","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional ophthalmic formulations are characterized by low bioavailability, short intraocular retention time, strong irritation, and failure to achieve the expected therapeutic effect due to the special physiological structure of the eye and the existence of many barriers. Microneedle drug delivery is a novel transdermal drug delivery modality. Responsive microneedles are defined as controllably releasing the drug payloads in response to physiological stimuli, including pH levels, temperature, enzymes, and reactive oxygen species (ROS), as well as external stimuli such as magnetic fields and light. In addition to inheriting the advantages of traditional microneedles, which include enhanced targeting and permeability, non-invasiveness, and painless application, the integration with stimulus-responsive materials enables responsive microneedles to achieve a personalized precision drug delivery process, which further increases the accuracy and efficiency of ocular treatments, making on-demand drug delivery possible. This article systematically reviews the classification, mechanisms, and characteristics of responsive microneedles and provides a detailed introduction to their diagnostic and therapeutic applications as well as real-time monitoring potential in ocular diseases, aiming to offer insights for the precision treatment of ocular diseases in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信