Banded phases in topological flocks.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-03-17 DOI:10.1039/d4sm01066c
Charles R Packard, Daniel M Sussman
{"title":"Banded phases in topological flocks.","authors":"Charles R Packard, Daniel M Sussman","doi":"10.1039/d4sm01066c","DOIUrl":null,"url":null,"abstract":"<p><p>Flocking phase transitions arise in many aligning active soft matter systems, and an interesting question concerns the role of \"topological\" <i>vs.</i> \"metric\" interactions on these transitions. While recent theoretical work suggests that the order-disorder transition in these polar aligning models is universally first order, numerical studies have suggested that topological models may instead have a continuous transition. Some recent simulations have found that some variations of topologically interacting flocking agents have a discontinuous transition, but unambiguous observations of phase coexistence using common Voronoi-based alignment remains elusive. In this work, we use a custom GPU-accelerated simulation package to perform million-particle-scale simulations of a Voronoi-Vicsek model in which alignment interactions stem from an <i>XY</i>-like Hamiltonian. By accessing such large systems on appropriately long time scales and in the time-continuous limit, we are able to show a regime of stable phase coexistence between the ordered and disordered phases, confirming the discontinuous nature of this transition in the thermodynamic limit.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01066c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flocking phase transitions arise in many aligning active soft matter systems, and an interesting question concerns the role of "topological" vs. "metric" interactions on these transitions. While recent theoretical work suggests that the order-disorder transition in these polar aligning models is universally first order, numerical studies have suggested that topological models may instead have a continuous transition. Some recent simulations have found that some variations of topologically interacting flocking agents have a discontinuous transition, but unambiguous observations of phase coexistence using common Voronoi-based alignment remains elusive. In this work, we use a custom GPU-accelerated simulation package to perform million-particle-scale simulations of a Voronoi-Vicsek model in which alignment interactions stem from an XY-like Hamiltonian. By accessing such large systems on appropriately long time scales and in the time-continuous limit, we are able to show a regime of stable phase coexistence between the ordered and disordered phases, confirming the discontinuous nature of this transition in the thermodynamic limit.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信