Spatially Informed Nonnegative Matrix Trifactorization for Coclustering Mass Spectrometry Data

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Andrea Sottosanti, Francesco Denti, Stefania Galimberti, Davide Risso, Giulia Capitoli
{"title":"Spatially Informed Nonnegative Matrix Trifactorization for Coclustering Mass Spectrometry Data","authors":"Andrea Sottosanti,&nbsp;Francesco Denti,&nbsp;Stefania Galimberti,&nbsp;Davide Risso,&nbsp;Giulia Capitoli","doi":"10.1002/bimj.70031","DOIUrl":null,"url":null,"abstract":"<p>Mass spectrometry imaging techniques measure molecular abundance in a tissue sample at a cellular resolution, all while preserving the spatial structure of the tissue. This kind of technology offers a detailed understanding of the role of several molecular factors in biological systems. For this reason, the development of fast and efficient computational methods that can extract relevant signals from massive experiments has become necessary. A key goal in mass spectrometry data analysis is the identification of molecules with similar functions in the analyzed biological system. This result can be achieved by studying the spatial distribution of the molecules' abundance patterns. To do so, one can perform coclustering, that is, dividing the molecules into groups according to their expression patterns over the tissue and segmenting the tissue according to the molecules' abundance levels. We present TRIFASE, a semi-nonnegative matrix trifactorization technique that performs coclustering while accounting for the spatial correlation of the data. We propose an estimation algorithm that solves the proposed matrix trifactorization problem. Moreover, to improve scalability, we also propose two heuristic approximations of the most expensive steps, which help the algorithm converge while significantly streamlining the computational cost. We validated our method on a series of simulation experiments, comparing the different estimating strategies discussed in the article. Last, we analyzed a mouse brain tissue sample processed with MALDI-MSI technology, showing how TRIFASE extracts specific expression patterns of molecule abundance in localized tissue areas and discovers blocks of proteins whose activation is directly linked to specific biological mechanisms.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70031","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry imaging techniques measure molecular abundance in a tissue sample at a cellular resolution, all while preserving the spatial structure of the tissue. This kind of technology offers a detailed understanding of the role of several molecular factors in biological systems. For this reason, the development of fast and efficient computational methods that can extract relevant signals from massive experiments has become necessary. A key goal in mass spectrometry data analysis is the identification of molecules with similar functions in the analyzed biological system. This result can be achieved by studying the spatial distribution of the molecules' abundance patterns. To do so, one can perform coclustering, that is, dividing the molecules into groups according to their expression patterns over the tissue and segmenting the tissue according to the molecules' abundance levels. We present TRIFASE, a semi-nonnegative matrix trifactorization technique that performs coclustering while accounting for the spatial correlation of the data. We propose an estimation algorithm that solves the proposed matrix trifactorization problem. Moreover, to improve scalability, we also propose two heuristic approximations of the most expensive steps, which help the algorithm converge while significantly streamlining the computational cost. We validated our method on a series of simulation experiments, comparing the different estimating strategies discussed in the article. Last, we analyzed a mouse brain tissue sample processed with MALDI-MSI technology, showing how TRIFASE extracts specific expression patterns of molecule abundance in localized tissue areas and discovers blocks of proteins whose activation is directly linked to specific biological mechanisms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信