β-Sheets Orientation in Physisorbed Protein Layers

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Matteo Piscitelli, Diellza Bajrami, Cinzia Di Franco, Lucia Sarcina, Michele Catacchio, Eleonora Macchia, Luisa Torsi, Boris Mizaikoff, Gaetano Scamarcio
{"title":"β-Sheets Orientation in Physisorbed Protein Layers","authors":"Matteo Piscitelli,&nbsp;Diellza Bajrami,&nbsp;Cinzia Di Franco,&nbsp;Lucia Sarcina,&nbsp;Michele Catacchio,&nbsp;Eleonora Macchia,&nbsp;Luisa Torsi,&nbsp;Boris Mizaikoff,&nbsp;Gaetano Scamarcio","doi":"10.1002/admi.202400867","DOIUrl":null,"url":null,"abstract":"<p>Physisorption of antibodies onto surfaces is a low-cost, rapid, and effective approach for immobilizing bioreceptors in applications such as bioelectronic sensors. However, there is a prevailing notion that physisorbed protein layers lack structural order, thus potentially compromising their stability and sensitivity compared to antibody films that are covalently attached to the substrate surface. This study demonstrates the preferential orientation of β-sheets within the secondary structure of protein layers, specifically anti-immunoglobulin G (anti-IgG) and bovine serum albumin (BSA), when physisorbed onto gold (Au) thin films. Using polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and infrared attenuated total reflection (IR-ATR) spectroscopy, it has been confirmed that the β-strands in these protein layers are tilted relative to the surface normal by average angles of 75.3° ± 0.4° for anti-IgG and of 79.3 ± 0.2° for BSA. These results are obtained by analyzing the orientation of the transition dipole moments (TDMs) associated with the amide I molecular vibrations derived from a comparison between experimental and simulated mid-infrared spectra assuming isotropically oriented TDMs. The simulations incorporate refractive and absorption index dispersions obtained from the IR-ATR spectra. Thus obtained findings offer valuable molecular-level insights facilitating the design and optimization of biofunctionalized interfaces in advanced biomedical and biosensing applications.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400867","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400867","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Physisorption of antibodies onto surfaces is a low-cost, rapid, and effective approach for immobilizing bioreceptors in applications such as bioelectronic sensors. However, there is a prevailing notion that physisorbed protein layers lack structural order, thus potentially compromising their stability and sensitivity compared to antibody films that are covalently attached to the substrate surface. This study demonstrates the preferential orientation of β-sheets within the secondary structure of protein layers, specifically anti-immunoglobulin G (anti-IgG) and bovine serum albumin (BSA), when physisorbed onto gold (Au) thin films. Using polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and infrared attenuated total reflection (IR-ATR) spectroscopy, it has been confirmed that the β-strands in these protein layers are tilted relative to the surface normal by average angles of 75.3° ± 0.4° for anti-IgG and of 79.3 ± 0.2° for BSA. These results are obtained by analyzing the orientation of the transition dipole moments (TDMs) associated with the amide I molecular vibrations derived from a comparison between experimental and simulated mid-infrared spectra assuming isotropically oriented TDMs. The simulations incorporate refractive and absorption index dispersions obtained from the IR-ATR spectra. Thus obtained findings offer valuable molecular-level insights facilitating the design and optimization of biofunctionalized interfaces in advanced biomedical and biosensing applications.

Abstract Image

物理吸收蛋白层中β-片取向
物理吸附抗体是一种低成本、快速、有效的固定化生物受体的方法,应用于生物电子传感器。然而,有一种流行的观点认为,物理吸附的蛋白质层缺乏结构秩序,因此与共价附着在底物表面的抗体膜相比,可能会损害它们的稳定性和灵敏度。这项研究证明了β-片在蛋白质层的二级结构中,特别是抗免疫球蛋白G(抗igg)和牛血清白蛋白(BSA),当物理吸附到金(Au)薄膜上时,具有优先取向。利用偏振调制红外反射吸收光谱(ppm - irras)和红外衰减全反射光谱(IR-ATR)证实,这些蛋白层中的β-链相对于表面法线倾斜,抗igg和BSA的平均角度分别为75.3°±0.4°和79.3±0.2°。这些结果是通过分析与酰胺I分子振动相关的跃迁偶极矩(tdm)的取向得到的,这些取向来自于假设各向同性tdm取向的实验和模拟中红外光谱的比较。模拟结合了从IR-ATR光谱中获得的折射率和吸收指数色散。因此,获得的发现提供了有价值的分子水平的见解,促进了先进生物医学和生物传感应用中生物功能化界面的设计和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信