Integrated Contact and Chemical Prelithiation Method to Boost Coulombic Efficiency of Si-Based Anodes for Li-Ion Batteries

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2025-03-18 DOI:10.1002/eom2.70010
Yu-Kang Chung, Asif Latief Bhat, Yu-Sheng Su
{"title":"Integrated Contact and Chemical Prelithiation Method to Boost Coulombic Efficiency of Si-Based Anodes for Li-Ion Batteries","authors":"Yu-Kang Chung,&nbsp;Asif Latief Bhat,&nbsp;Yu-Sheng Su","doi":"10.1002/eom2.70010","DOIUrl":null,"url":null,"abstract":"<p>Silicon-based anodes are considered a promising alternative for next-generation lithium-ion batteries (LIBs) due to their high theoretical capacity, which is significantly greater than that of traditional graphite anodes. However, the inherent challenge of the associated low initial Coulombic efficiency (ICE) due to irreversible lithium consumption limits their practical applications. Prelithiation techniques have emerged as a solution to compensate for this initial lithium loss, but current methods often face challenges such as high costs, incomplete lithiation, and complex setups. In this study, we present a novel modified direct contact prelithiation method utilizing a Li-ion-free biphenyl solution. This innovative approach integrates the advantages of both direct contact and wet chemical prelithiation, achieving fast, uniform, and cost-effective prelithiation of Si-based anodes. Electrochemical characterizations demonstrate that the method significantly enhances ICE, reaching from 66.7% to 115.4% after 10 min of prelithiation for SiO<sub>x</sub> anodes and from 91.4% to 100.5% after just 90 s of prelithiation for Si anodes, while also stabilizing open-circuit voltage. Furthermore, microstructural analyses reveal the formation of a distinct solid electrolyte interphase layer after prelithiation. XPS depth profiling confirms the progressive lithiation of Si-based anodes, highlighting the formation of lithium oxide and lithium silicate compounds at varying depths with extended prelithiation times. These findings demonstrate the effectiveness of the proposed integrated prelithiation method in enhancing the electrochemical performance of Si-based anodes, paving the way for the development of high-energy-density LIBs.</p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 4","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon-based anodes are considered a promising alternative for next-generation lithium-ion batteries (LIBs) due to their high theoretical capacity, which is significantly greater than that of traditional graphite anodes. However, the inherent challenge of the associated low initial Coulombic efficiency (ICE) due to irreversible lithium consumption limits their practical applications. Prelithiation techniques have emerged as a solution to compensate for this initial lithium loss, but current methods often face challenges such as high costs, incomplete lithiation, and complex setups. In this study, we present a novel modified direct contact prelithiation method utilizing a Li-ion-free biphenyl solution. This innovative approach integrates the advantages of both direct contact and wet chemical prelithiation, achieving fast, uniform, and cost-effective prelithiation of Si-based anodes. Electrochemical characterizations demonstrate that the method significantly enhances ICE, reaching from 66.7% to 115.4% after 10 min of prelithiation for SiOx anodes and from 91.4% to 100.5% after just 90 s of prelithiation for Si anodes, while also stabilizing open-circuit voltage. Furthermore, microstructural analyses reveal the formation of a distinct solid electrolyte interphase layer after prelithiation. XPS depth profiling confirms the progressive lithiation of Si-based anodes, highlighting the formation of lithium oxide and lithium silicate compounds at varying depths with extended prelithiation times. These findings demonstrate the effectiveness of the proposed integrated prelithiation method in enhancing the electrochemical performance of Si-based anodes, paving the way for the development of high-energy-density LIBs.

Abstract Image

集成接触和化学预锂化方法提高锂离子电池硅基阳极的库仑效率
硅基阳极被认为是下一代锂离子电池(lib)的一个很有前途的替代品,因为它的理论容量高,明显大于传统的石墨阳极。然而,由于不可逆锂消耗导致的低初始库仑效率(ICE)的固有挑战限制了它们的实际应用。预锂化技术已成为弥补初始锂损失的一种解决方案,但目前的方法往往面临成本高、锂化不完全和设置复杂等挑战。在这项研究中,我们提出了一种新的改进的直接接触预锂化方法,利用无锂离子联苯溶液。这种创新的方法集成了直接接触和湿化学预锂化的优点,实现了硅基阳极的快速、均匀和经济高效的预锂化。电化学表征表明,该方法显著提高了ICE, SiOx阳极预锂化10 min后,ICE从66.7%提高到115.4%,Si阳极预锂化90 s后,ICE从91.4%提高到100.5%,同时还稳定了开路电压。此外,微观结构分析表明,预锂化后形成了独特的固体电解质间相层。XPS深度剖面证实了硅基阳极的逐渐锂化,突出显示了随着预锂化时间的延长,在不同深度形成的氧化锂和硅酸锂化合物。这些发现证明了所提出的集成预锂化方法在提高硅基阳极电化学性能方面的有效性,为高能量密度锂离子电池的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信