In Search of Rogue Waves: A Novel Proposal Distribution for Parallelized Rejection Sampling of the Truncated KdV Gibbs Measure

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Nicholas J. Moore, Brendan Foerster
{"title":"In Search of Rogue Waves: A Novel Proposal Distribution for Parallelized Rejection Sampling of the Truncated KdV Gibbs Measure","authors":"Nicholas J. Moore,&nbsp;Brendan Foerster","doi":"10.1111/sapm.70043","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Gibbs ensemble of the truncated KdV (TKdV) equation has been shown to accurately describe the anomalous wave statistics observed in laboratory experiments, in particular the emergence of extreme events. Here, we introduce a novel proposal distribution that facilitates efficient rejection sampling of the TKdV Gibbs measure. Within parameter regimes accessible to laboratory experiments and capable of producing extreme events, the proposal distribution generates 1–6 orders of magnitude more accepted samples than does a naive, uniform distribution. When equipped with the new proposal distribution, a simple rejection algorithm enjoys key advantages over a Markov chain Monte Carlo algorithm, include better parallelization properties and generation of uncorrelated samples.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70043","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Gibbs ensemble of the truncated KdV (TKdV) equation has been shown to accurately describe the anomalous wave statistics observed in laboratory experiments, in particular the emergence of extreme events. Here, we introduce a novel proposal distribution that facilitates efficient rejection sampling of the TKdV Gibbs measure. Within parameter regimes accessible to laboratory experiments and capable of producing extreme events, the proposal distribution generates 1–6 orders of magnitude more accepted samples than does a naive, uniform distribution. When equipped with the new proposal distribution, a simple rejection algorithm enjoys key advantages over a Markov chain Monte Carlo algorithm, include better parallelization properties and generation of uncorrelated samples.

寻找异常波:截断KdV吉布斯测度的并行拒绝抽样的一种新的建议分布
截断KdV (TKdV)方程的Gibbs系综已被证明可以准确地描述在实验室实验中观察到的异常波统计,特别是极端事件的出现。在这里,我们引入了一种新的提案分布,促进了TKdV吉布斯测度的有效拒绝抽样。在实验室实验中可获得的参数范围内,能够产生极端事件,建议分布比朴素的均匀分布产生1-6个数量级的可接受样本。当配备了新的提议分布时,简单的拒绝算法比马尔可夫链蒙特卡罗算法具有关键优势,包括更好的并行化特性和不相关样本的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信