A genetic balancing act: Exploring segregation distortion of SCN resistance in soybean [Glycine max (L.) Merr.]

IF 2 3区 农林科学 Q2 AGRONOMY
Crop Science Pub Date : 2025-03-18 DOI:10.1002/csc2.70040
Seda Ozer, Andrew F. Bent, Eliana D. Monteverde, Sarah J. Schultz, Brian W. Diers
{"title":"A genetic balancing act: Exploring segregation distortion of SCN resistance in soybean [Glycine max (L.) Merr.]","authors":"Seda Ozer,&nbsp;Andrew F. Bent,&nbsp;Eliana D. Monteverde,&nbsp;Sarah J. Schultz,&nbsp;Brian W. Diers","doi":"10.1002/csc2.70040","DOIUrl":null,"url":null,"abstract":"<p><i>Rhg1</i> is the most important locus conferring resistance to soybean cyst nematode (SCN; <i>Heterodera glycine</i> Ichinohe) in soybean [<i>Glycine max</i> (L.) Merr.]. Previous research has shown that to obtain viable plants, the SCN resistance allele at <i>Rhg1</i> on chromosome 18 needs to be paired with <i>NSF<sub>RAN07</sub></i>, an atypical <span>r</span>esistance-<span>a</span>ssociated <i><span>N</span>SF</i> allele of the <i>N-ethylmaleimide sensitive factor</i> (<i>NSF</i>) gene on chromosome 07. This causes segregation distortion in populations developed from crosses between resistant and susceptible plants. Our study aimed to improve our understanding of this segregation distortion and determine the developmental stage at which it occurs. DNA from developing F<sub>2</sub> seeds and F<sub>2</sub> plants originating from crosses between resistant and susceptible parents was genotyped with markers for the <i>rhg1</i> and <i>NSF</i> loci using TaqMan assays. Chi-square tests revealed significant deviations from the expected Mendelian segregation ratio (1:2:1:2:4:2:1:2:1) in both F<sub>2</sub> seeds and plants, indicating segregation distortion at these loci. The absence of the <i>rhg1-b_rhg1-b_NSF<sub>Ch07</sub>_NSF<sub>Ch07</sub></i> genotype supports the previous finding that the combination of the resistance allele <i>rhg1-b</i> and the commonly occurring <i>NSF<sub>Ch07</sub></i> allele is lethal, apparently because the α-SNAP (where SNAP is soluble NSF attachment protein) encoded by <i>rhg1-b</i> or <i>rhg1-a</i> interacts well with the <i>NSF</i><sub>RAN07</sub> protein but not the more common <i>NSF</i><sub>Ch07</sub> protein. The findings indicate that segregation distortion occurs prior to seed maturation and is primarily due to zygotic selection during early seed development. The results emphasize the need to consider this genetic interaction in breeding efforts to improve soybean since segregation distortion may affect the inheritance of SCN resistance and other traits linked to <i>Rhg1</i> or <i>NSF<sub>Ch07</sub></i>.</p>","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"65 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/csc2.70040","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/csc2.70040","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Rhg1 is the most important locus conferring resistance to soybean cyst nematode (SCN; Heterodera glycine Ichinohe) in soybean [Glycine max (L.) Merr.]. Previous research has shown that to obtain viable plants, the SCN resistance allele at Rhg1 on chromosome 18 needs to be paired with NSFRAN07, an atypical resistance-associated NSF allele of the N-ethylmaleimide sensitive factor (NSF) gene on chromosome 07. This causes segregation distortion in populations developed from crosses between resistant and susceptible plants. Our study aimed to improve our understanding of this segregation distortion and determine the developmental stage at which it occurs. DNA from developing F2 seeds and F2 plants originating from crosses between resistant and susceptible parents was genotyped with markers for the rhg1 and NSF loci using TaqMan assays. Chi-square tests revealed significant deviations from the expected Mendelian segregation ratio (1:2:1:2:4:2:1:2:1) in both F2 seeds and plants, indicating segregation distortion at these loci. The absence of the rhg1-b_rhg1-b_NSFCh07_NSFCh07 genotype supports the previous finding that the combination of the resistance allele rhg1-b and the commonly occurring NSFCh07 allele is lethal, apparently because the α-SNAP (where SNAP is soluble NSF attachment protein) encoded by rhg1-b or rhg1-a interacts well with the NSFRAN07 protein but not the more common NSFCh07 protein. The findings indicate that segregation distortion occurs prior to seed maturation and is primarily due to zygotic selection during early seed development. The results emphasize the need to consider this genetic interaction in breeding efforts to improve soybean since segregation distortion may affect the inheritance of SCN resistance and other traits linked to Rhg1 or NSFCh07.

Abstract Image

Rhg1 是赋予大豆[Glycine max (L.) Merr.]对大豆胞囊线虫(SCN;Heterodera glycine Ichinohe)抗性的最重要基因座。先前的研究表明,要获得有活力的植株,染色体 18 上 Rhg1 的 SCN 抗性等位基因需要与染色体 07 上 N-ethylmaleimide 敏感因子(NSF)基因的非典型抗性相关 NSF 等位基因 NSFRAN07 配对。这导致抗性植株和易感植株杂交产生的群体出现分离畸变。我们的研究旨在加深对这种分离畸变的理解,并确定其发生的发育阶段。我们使用 TaqMan 方法对抗性亲本和易感亲本杂交产生的发育中 F2 种子和 F2 植株的 DNA 进行了 rhg1 和 NSF 基因座标记的基因分型。Chi-square 检验表明,F2 种子和植株的基因型与预期的孟德尔分离比(1:2:1:2:4:2:1:2:1:1)有明显偏差,表明这些基因座存在分离畸变。rhg1-b_rhg1-b_NSFCh07_NSFCh07 基因型的缺失支持了之前的发现,即抗性等位基因 rhg1-b 与常见的 NSFCh07 等位基因的结合是致死的,这显然是因为 rhg1-b 或 rhg1-a 编码的 α-SNAP(SNAP 是可溶性 NSF 连接蛋白)与 NSFRAN07 蛋白有很好的相互作用,但与更常见的 NSFCh07 蛋白没有相互作用。研究结果表明,分离畸变发生在种子成熟之前,主要是由于种子早期发育过程中的合子选择造成的。这些结果强调了在改良大豆的育种工作中考虑这种遗传相互作用的必要性,因为分离畸变可能会影响 SCN 抗性以及与 Rhg1 或 NSFCh07 相关的其他性状的遗传。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crop Science
Crop Science 农林科学-农艺学
CiteScore
4.50
自引率
8.70%
发文量
197
审稿时长
3 months
期刊介绍: Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信