Surrogate Computational Homogenization of Viscoelastic Composites

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yosuke Yamanaka, Norio Hirayama, Kenjiro Terada
{"title":"Surrogate Computational Homogenization of Viscoelastic Composites","authors":"Yosuke Yamanaka,&nbsp;Norio Hirayama,&nbsp;Kenjiro Terada","doi":"10.1002/nme.70008","DOIUrl":null,"url":null,"abstract":"<p>We establish a surrogate model for computational homogenization of composite materials consisting of multiple viscoelastic constituents. A surrogate macroscopic material is identified by performing interpolation using radial basis functions (RBFs) and cubic spline functions on a constitutive database generated by a series of microscopic analyses or, equivalently, numerical material tests (NMTs) on a unit cell to represent anisotropic stress relaxation behavior as well as its dependence on strain rate and temperature. After briefly reviewing the two-scale boundary value problem derived based on homogenization theory, an RBF interpolation with a normalized kernel is formulated for a discrete dataset, and an optimization algorithm is applied to determine the three hyperparameters so as to achieve proper interpolation. Then, we formulate the surrogate homogenization model (SHM) using the interpolants to substitute for the macroscopic viscoelastic response. To show the specific procedure of the proposed surrogate modeling and demonstrate the performance of the created SHM, a representative numerical example is presented in the offline and online stages. In the offline stage, NMTs are carried out in the space of training data, including the temperature, to generate a dataset as long as the macroscopic stresses can be learned exhaustively, and then optimization is performed to determine the set of hyperparameters. Then, to validate the created SHM, its responses to unseen loading and temperature histories are compared with the corresponding NMT results. In the online stage, the created SHM is used to carry out a macroscopic analysis of a simple structure under specific loading and temperature conditions, and subsequently, the obtained macroscopic stresses are compared with those obtained from the localization analysis results. The results are also compared with those obtained from the single-scale direct numerical analyses.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a surrogate model for computational homogenization of composite materials consisting of multiple viscoelastic constituents. A surrogate macroscopic material is identified by performing interpolation using radial basis functions (RBFs) and cubic spline functions on a constitutive database generated by a series of microscopic analyses or, equivalently, numerical material tests (NMTs) on a unit cell to represent anisotropic stress relaxation behavior as well as its dependence on strain rate and temperature. After briefly reviewing the two-scale boundary value problem derived based on homogenization theory, an RBF interpolation with a normalized kernel is formulated for a discrete dataset, and an optimization algorithm is applied to determine the three hyperparameters so as to achieve proper interpolation. Then, we formulate the surrogate homogenization model (SHM) using the interpolants to substitute for the macroscopic viscoelastic response. To show the specific procedure of the proposed surrogate modeling and demonstrate the performance of the created SHM, a representative numerical example is presented in the offline and online stages. In the offline stage, NMTs are carried out in the space of training data, including the temperature, to generate a dataset as long as the macroscopic stresses can be learned exhaustively, and then optimization is performed to determine the set of hyperparameters. Then, to validate the created SHM, its responses to unseen loading and temperature histories are compared with the corresponding NMT results. In the online stage, the created SHM is used to carry out a macroscopic analysis of a simple structure under specific loading and temperature conditions, and subsequently, the obtained macroscopic stresses are compared with those obtained from the localization analysis results. The results are also compared with those obtained from the single-scale direct numerical analyses.

Abstract Image

粘弹性复合材料的代理计算均匀化
我们建立了由多个粘弹性组分组成的复合材料计算均匀化的代理模型。通过使用径向基函数(rbf)和三次样条函数对本构数据库进行插值来确定替代宏观材料,本构数据库是由一系列微观分析或等效的单位细胞上的数值材料试验(NMTs)生成的,以表示各向异性应力松弛行为及其对应变速率和温度的依赖。在简要回顾了基于均匀化理论导出的两尺度边值问题的基础上,针对离散数据集,提出了一种具有归一化核的RBF插值方法,并应用优化算法确定了三个超参数,从而实现了合理的插值。在此基础上,建立了用插值法代替宏观粘弹性响应的代理均匀化模型(SHM)。为了说明所提出的代理建模的具体步骤和所创建的SHM的性能,给出了离线和在线两个阶段的代表性数值算例。在离线阶段,在包括温度在内的训练数据空间中,只要能穷尽地学习到宏观应力,就进行nmt,生成一个数据集,然后进行优化,确定超参数集。然后,为了验证所创建的SHM,将其对未知载荷和温度历史的响应与相应的NMT结果进行比较。在在线阶段,利用所创建的SHM对某简单结构在特定载荷和温度条件下进行宏观分析,并将得到的宏观应力与局部化分析结果进行比较。并与单尺度直接数值分析结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信