Water-Restrained Hydrogel Electrolytes with Repulsion-Driven Cationic Express Pathways for Durable Zinc-Ion Batteries

IF 26.6 1区 材料科学 Q1 Engineering
Dewu Lin, Yushuang Lin, Ruihong Pan, Jiapei Li, Anquan Zhu, Tian Zhang, Kai Liu, Dongyu Feng, Kunlun Liu, Yin Zhou, Chengkai Yang, Guo Hong, Wenjun Zhang
{"title":"Water-Restrained Hydrogel Electrolytes with Repulsion-Driven Cationic Express Pathways for Durable Zinc-Ion Batteries","authors":"Dewu Lin,&nbsp;Yushuang Lin,&nbsp;Ruihong Pan,&nbsp;Jiapei Li,&nbsp;Anquan Zhu,&nbsp;Tian Zhang,&nbsp;Kai Liu,&nbsp;Dongyu Feng,&nbsp;Kunlun Liu,&nbsp;Yin Zhou,&nbsp;Chengkai Yang,&nbsp;Guo Hong,&nbsp;Wenjun Zhang","doi":"10.1007/s40820-025-01704-5","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>A novel cationic hydrogel electrolyte is prepared to address a significant challenge of balancing the tripartite trade-offs of hydrogel properties.</p>\n </li>\n <li>\n <p>Cationic express pathways enable fast and selective Zn<sup>2+</sup> transport through dynamic ionic repulsion, achieving high ionic conductivity (28.7 mS cm<sup>−1</sup>) and Zn<sup>2+</sup> transference number (0.79).</p>\n </li>\n <li>\n <p>The hydrogel demonstrates exceptional cycling stability across − 15 to 60 °C, showcasing great potential for practical flexible battery applications.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01704-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01704-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights

  • A novel cationic hydrogel electrolyte is prepared to address a significant challenge of balancing the tripartite trade-offs of hydrogel properties.

  • Cationic express pathways enable fast and selective Zn2+ transport through dynamic ionic repulsion, achieving high ionic conductivity (28.7 mS cm−1) and Zn2+ transference number (0.79).

  • The hydrogel demonstrates exceptional cycling stability across − 15 to 60 °C, showcasing great potential for practical flexible battery applications.

耐久锌离子电池用具有斥力驱动阳离子表达途径的水凝胶电解质
制备了一种新型阳离子水凝胶电解质,以解决平衡水凝胶性质的三方权衡的重大挑战。阳离子表达途径通过动态离子排斥力实现快速和选择性的Zn2+运输,实现高离子电导率(28.7 mS cm−1)和Zn2+转移数(0.79)。水凝胶在- 15至60°C范围内具有出色的循环稳定性,显示出实际柔性电池应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信