Probing dimension-8 SMEFT operators through neutral meson mixing

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Yi Liao, Xiao-Dong Ma, Hao-Lin Wang
{"title":"Probing dimension-8 SMEFT operators through neutral meson mixing","authors":"Yi Liao,&nbsp;Xiao-Dong Ma,&nbsp;Hao-Lin Wang","doi":"10.1007/JHEP03(2025)133","DOIUrl":null,"url":null,"abstract":"<p>We investigate the impact of effective interactions of dimension-8 (dim-8) operators in the standard model effective field theory (SMEFT) on neutral meson mixing, focusing on the <span>\\( {K}^0-{\\overline{K}}^0 \\)</span>, <span>\\( {B}_{d,s}-{\\overline{B}}_{d,s} \\)</span>, and <span>\\( {D}^0-{\\overline{D}}^0 \\)</span> systems. Within the framework of the low energy effective field theory (LEFT), each system is governed by eight dim-6 operators, with four originating at tree level from dim-6 SMEFT operators and the other four from dim-8 SMEFT operators. Notably, in certain UV complete models those dim-8 operators instead of the dim-6 ones are generated at the leading order. Our analysis focuses on those dim-8 operators and includes their one-loop QCD renormalization group running effects. By leveraging the LEFT master formula we impose stringent constraints on the effective scales associated with these dim-8 operators. We find that neutral meson mixing can probe an effective scale up to 80 TeV for some operators, surpassing the constraints imposed on other dim-8 operators by other observables. Lastly, we present a UV complete model capable of generating dim-8 operators at the leading order, thus offering a unique perspective on the interplay between different operator dimensions in probing new physics phenomena.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)133.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)133","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the impact of effective interactions of dimension-8 (dim-8) operators in the standard model effective field theory (SMEFT) on neutral meson mixing, focusing on the \( {K}^0-{\overline{K}}^0 \), \( {B}_{d,s}-{\overline{B}}_{d,s} \), and \( {D}^0-{\overline{D}}^0 \) systems. Within the framework of the low energy effective field theory (LEFT), each system is governed by eight dim-6 operators, with four originating at tree level from dim-6 SMEFT operators and the other four from dim-8 SMEFT operators. Notably, in certain UV complete models those dim-8 operators instead of the dim-6 ones are generated at the leading order. Our analysis focuses on those dim-8 operators and includes their one-loop QCD renormalization group running effects. By leveraging the LEFT master formula we impose stringent constraints on the effective scales associated with these dim-8 operators. We find that neutral meson mixing can probe an effective scale up to 80 TeV for some operators, surpassing the constraints imposed on other dim-8 operators by other observables. Lastly, we present a UV complete model capable of generating dim-8 operators at the leading order, thus offering a unique perspective on the interplay between different operator dimensions in probing new physics phenomena.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信