Cadmium telluride quantum dot-MXene composite–based electrochemical sensing platform for simultaneous determination of rutin and quercetin in foods

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Lin Li, Lanlan Liu, Jianmei Zhou, Chen Gu, Xiongzhi Wu, Chenghong Lei, Liqiang Yan
{"title":"Cadmium telluride quantum dot-MXene composite–based electrochemical sensing platform for simultaneous determination of rutin and quercetin in foods","authors":"Lin Li,&nbsp;Lanlan Liu,&nbsp;Jianmei Zhou,&nbsp;Chen Gu,&nbsp;Xiongzhi Wu,&nbsp;Chenghong Lei,&nbsp;Liqiang Yan","doi":"10.1007/s00604-025-07092-2","DOIUrl":null,"url":null,"abstract":"<div><p> A simple and rapid electrochemical method based on a composite of cadmium telluride quantum dots (CdTe QDs) and MXene is developed for the simultaneous determination of rutin and quercetin in food samples. The CdTe QD-MXene composite is synthesized via the in situ growth of CdTe QDs on MXene, which serves as a carrier and enhances electrical conductivity. Incorporating CdTe QDs into MXene interlayers effectively prevents agglomeration in MXene and provides more active sites for electrochemical determination. The developed electrochemical method can successfully determine rutin and quercetin, both individually and simultaneously, in aqueous solutions while achieving high stability and selectivity. Notably, the prepared sensor exhibits limits of detection of 3.300 × 10<sup>−8</sup> and 3.268 × 10<sup>−7</sup> M for the simultaneous determination of rutin and quercetin, respectively. Moreover, the sensing platform is used for the determination of rutin in buckwheat, locust rice, and apples, with results well comparable to those obtained using ultraviolet spectroscopy. Finally, the proposed sensor is employed to monitor the hydrolysis of rutin into quercetin in buckwheat using an electrochemical method for the first time. This study provides new ideas for the application of electrochemical sensors in food and drug science.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07092-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A simple and rapid electrochemical method based on a composite of cadmium telluride quantum dots (CdTe QDs) and MXene is developed for the simultaneous determination of rutin and quercetin in food samples. The CdTe QD-MXene composite is synthesized via the in situ growth of CdTe QDs on MXene, which serves as a carrier and enhances electrical conductivity. Incorporating CdTe QDs into MXene interlayers effectively prevents agglomeration in MXene and provides more active sites for electrochemical determination. The developed electrochemical method can successfully determine rutin and quercetin, both individually and simultaneously, in aqueous solutions while achieving high stability and selectivity. Notably, the prepared sensor exhibits limits of detection of 3.300 × 10−8 and 3.268 × 10−7 M for the simultaneous determination of rutin and quercetin, respectively. Moreover, the sensing platform is used for the determination of rutin in buckwheat, locust rice, and apples, with results well comparable to those obtained using ultraviolet spectroscopy. Finally, the proposed sensor is employed to monitor the hydrolysis of rutin into quercetin in buckwheat using an electrochemical method for the first time. This study provides new ideas for the application of electrochemical sensors in food and drug science.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信