Rapid Magnetic, Thermal, and Structural Scaling of Synchronous Machines Based on Flux and Loss Maps

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Simone Ferrari;Gaetano Dilevrano;Paolo Ragazzo;Gianmario Pellegrino;Timothy Burress
{"title":"Rapid Magnetic, Thermal, and Structural Scaling of Synchronous Machines Based on Flux and Loss Maps","authors":"Simone Ferrari;Gaetano Dilevrano;Paolo Ragazzo;Gianmario Pellegrino;Timothy Burress","doi":"10.1109/OJIA.2025.3545475","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a rapid and accurate method for scaling permanent magnet synchronous machines using flux linkage and loss maps. The method enables the design and comprehensive characterization of scaled machines to meet new specifications for peak torque, power, maximum operating speed, voltage, and current requirements without the need for finite-element simulations. The efficiency map of the scaled machine can be computed with negligible computational effort. The analysis encompasses the scaling of the liquid cooling jacket setup and evaluates the continuous stall torque of the final machine. Furthermore, the method addresses scaling rules for demagnetization current limits, peak short-circuit currents and uncontrolled generator voltages, allowing the evaluation of the safest shut-down strategy against the different fault scenarios. The use of the stack length versus number of turns selection plane facilitates the visualization of the key performance figures and the minimization of the stack length while adhering to inverter voltage and current constraints. Overall, this scaling method offers a streamlined approach to the preliminary design of e-motors and facilitates system-level optimization studies. The method is showcased by scaling the e-motor of the BMW i3 to meet the specifications of the moto-generator 2 of the 4th generation Toyota Prius.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"137-147"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902191","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10902191/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce a rapid and accurate method for scaling permanent magnet synchronous machines using flux linkage and loss maps. The method enables the design and comprehensive characterization of scaled machines to meet new specifications for peak torque, power, maximum operating speed, voltage, and current requirements without the need for finite-element simulations. The efficiency map of the scaled machine can be computed with negligible computational effort. The analysis encompasses the scaling of the liquid cooling jacket setup and evaluates the continuous stall torque of the final machine. Furthermore, the method addresses scaling rules for demagnetization current limits, peak short-circuit currents and uncontrolled generator voltages, allowing the evaluation of the safest shut-down strategy against the different fault scenarios. The use of the stack length versus number of turns selection plane facilitates the visualization of the key performance figures and the minimization of the stack length while adhering to inverter voltage and current constraints. Overall, this scaling method offers a streamlined approach to the preliminary design of e-motors and facilitates system-level optimization studies. The method is showcased by scaling the e-motor of the BMW i3 to meet the specifications of the moto-generator 2 of the 4th generation Toyota Prius.
基于磁通和损耗图的同步电机的快速磁、热和结构缩放
本文介绍了一种利用磁链和损耗图对永磁同步电机进行快速精确标定的方法。该方法能够设计和全面表征缩放机器,以满足峰值扭矩,功率,最大运行速度,电压和电流要求的新规范,而无需进行有限元模拟。缩放后的机器的效率图可以用微不足道的计算量计算出来。分析包括液冷夹套设置的结垢,并评估最终机器的连续失速扭矩。此外,该方法解决了退磁电流限制、峰值短路电流和不受控制的发电机电压的缩放规则,从而可以针对不同的故障场景评估最安全的停机策略。使用堆栈长度与匝数选择平面有助于关键性能数据的可视化和堆栈长度的最小化,同时坚持逆变器电压和电流的限制。总的来说,这种缩放方法为电机的初步设计提供了一种简化的方法,并促进了系统级优化研究。根据第4代丰田普锐斯(Prius)的电动发电机2的规格,将宝马i3的电动马达进行了缩小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信