DeepEgo+: Unsynchronized Radar Sensor Fusion for Robust Vehicle Ego-Motion Estimation

Simin Zhu;Satish Ravindran;Lihui Chen;Alexander G. Yarovoy;Francesco Fioranelli
{"title":"DeepEgo+: Unsynchronized Radar Sensor Fusion for Robust Vehicle Ego-Motion Estimation","authors":"Simin Zhu;Satish Ravindran;Lihui Chen;Alexander G. Yarovoy;Francesco Fioranelli","doi":"10.1109/TRS.2025.3546001","DOIUrl":null,"url":null,"abstract":"This article studies the problem of estimating the 2-D motion state of a moving vehicle (ego motion) using millimeter-wave (mmWave) automotive radar sensors. Unlike prior single-radar or synchronized radar systems, the proposed approach (named DeepEgo+) can achieve sensor fusion and estimate ego motion using an unsynchronized radar sensor network. To achieve this goal, DeepEgo+ combines two neural network (NN)-based components (i.e., Module A for motion estimation and Module B for sensor fusion) with a decentralized processing architecture using the late fusion technique. Specifically, each radar sensor in the network has a Module A that processes its output and computes an initial motion estimate, while Module B fuses the initial estimates from all radar sensors and outputs the final estimate. This novel architecture and fusion scheme not only eliminates the synchronization requirement but also provides robustness and scalability to the system. To benchmark its performance, DeepEgo+ has been tested using a challenging real-world radar dataset, RadarScenes. The results show that DeepEgo+ provides significant performance advantages over recent state-of-the-art approaches in terms of estimation accuracy, long-term stability, and robustness against high outlier ratios and sensor failures. Furthermore, the influence of vehicle nonzero acceleration on ego-motion estimation is identified for the first time, and DeepEgo+ demonstrates the feasibility of compensating for its effect and further improving the estimation accuracy.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"483-497"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10904906/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies the problem of estimating the 2-D motion state of a moving vehicle (ego motion) using millimeter-wave (mmWave) automotive radar sensors. Unlike prior single-radar or synchronized radar systems, the proposed approach (named DeepEgo+) can achieve sensor fusion and estimate ego motion using an unsynchronized radar sensor network. To achieve this goal, DeepEgo+ combines two neural network (NN)-based components (i.e., Module A for motion estimation and Module B for sensor fusion) with a decentralized processing architecture using the late fusion technique. Specifically, each radar sensor in the network has a Module A that processes its output and computes an initial motion estimate, while Module B fuses the initial estimates from all radar sensors and outputs the final estimate. This novel architecture and fusion scheme not only eliminates the synchronization requirement but also provides robustness and scalability to the system. To benchmark its performance, DeepEgo+ has been tested using a challenging real-world radar dataset, RadarScenes. The results show that DeepEgo+ provides significant performance advantages over recent state-of-the-art approaches in terms of estimation accuracy, long-term stability, and robustness against high outlier ratios and sensor failures. Furthermore, the influence of vehicle nonzero acceleration on ego-motion estimation is identified for the first time, and DeepEgo+ demonstrates the feasibility of compensating for its effect and further improving the estimation accuracy.
DeepEgo+:用于鲁棒车辆自我运动估计的非同步雷达传感器融合
本文研究了利用毫米波(mmWave)汽车雷达传感器估计运动车辆二维运动状态(自我运动)的问题。与之前的单雷达或同步雷达系统不同,所提出的方法(名为DeepEgo+)可以实现传感器融合,并使用非同步雷达传感器网络估计自我运动。为了实现这一目标,DeepEgo+将两个基于神经网络(NN)的组件(即用于运动估计的模块A和用于传感器融合的模块B)与使用后期融合技术的分散处理架构结合在一起。具体来说,网络中的每个雷达传感器都有一个模块a处理其输出并计算初始运动估计,而模块B融合所有雷达传感器的初始估计并输出最终估计。这种新颖的体系结构和融合方案不仅消除了同步需求,而且提供了系统的鲁棒性和可扩展性。为了对其性能进行基准测试,DeepEgo+已经使用具有挑战性的真实雷达数据集RadarScenes进行了测试。结果表明,DeepEgo+在估计精度、长期稳定性以及对高异常值比和传感器故障的鲁棒性方面,比目前最先进的方法具有显著的性能优势。此外,首次识别了车辆非零加速度对自运动估计的影响,DeepEgo+验证了补偿其影响并进一步提高估计精度的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信