Progressive Growth-Based Momentum Contrast for Unsupervised Representative Learning in Classification Tasks

Yantao Li;Shijun Ling;Hongyu Huang;Feno H. Rabevohitra
{"title":"Progressive Growth-Based Momentum Contrast for Unsupervised Representative Learning in Classification Tasks","authors":"Yantao Li;Shijun Ling;Hongyu Huang;Feno H. Rabevohitra","doi":"10.1109/LNET.2024.3482295","DOIUrl":null,"url":null,"abstract":"Contrastive unsupervised learning has made significant progress, but there is still potential for improvement by capturing finer details in input data. In this letter, we present PGMoCo, a Progressive Growth-based Momentum Contrast framework for unsupervised representative learning in classification tasks. PGMoCo begins by learning the overall distribution of samples at a coarse scale and progressively refines the representation by incorporating increasingly finer details. PGMoCo consists of data augmentation, progressive growth, an alternative multilayer perceptron (MLP) head, and a loss function. First, PGMoCo applies transformation-based data augmentation to the input samples. Then, it progressively learns features at multiple scales, uses an alternative MLP head to project latent representations into a contrastive loss space, and finally employs a specialized loss function to classify the samples. We evaluate PGMoCo on three datasets: CIFAR-10 and PolyU Palmprint (image classification) and H-MOG (person identification). PGMoCo achieves classification accuracies of 86.76% on CIFAR-10, 95.94% on PolyU Palmprint, and 80.10% on H-MOG, outperforming existing state-of-the-art methods.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 1","pages":"31-35"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10720887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contrastive unsupervised learning has made significant progress, but there is still potential for improvement by capturing finer details in input data. In this letter, we present PGMoCo, a Progressive Growth-based Momentum Contrast framework for unsupervised representative learning in classification tasks. PGMoCo begins by learning the overall distribution of samples at a coarse scale and progressively refines the representation by incorporating increasingly finer details. PGMoCo consists of data augmentation, progressive growth, an alternative multilayer perceptron (MLP) head, and a loss function. First, PGMoCo applies transformation-based data augmentation to the input samples. Then, it progressively learns features at multiple scales, uses an alternative MLP head to project latent representations into a contrastive loss space, and finally employs a specialized loss function to classify the samples. We evaluate PGMoCo on three datasets: CIFAR-10 and PolyU Palmprint (image classification) and H-MOG (person identification). PGMoCo achieves classification accuracies of 86.76% on CIFAR-10, 95.94% on PolyU Palmprint, and 80.10% on H-MOG, outperforming existing state-of-the-art methods.
分类任务中无监督代表性学习的渐进式增长动量对比
对比无监督学习已经取得了重大进展,但仍有可能通过在输入数据中捕获更精细的细节来改进。在这封信中,我们提出了PGMoCo,一个基于渐进式增长的动量对比框架,用于分类任务中的无监督代表性学习。PGMoCo开始学习样本的总体分布在一个粗糙的尺度和逐步细化的表示,通过纳入越来越精细的细节。PGMoCo由数据增强、渐进增长、可选多层感知器(MLP)头部和损失函数组成。首先,PGMoCo对输入样本应用基于转换的数据增强。然后,它在多个尺度上逐步学习特征,使用备选MLP头部将潜在表征投影到对比损失空间中,最后使用专门的损失函数对样本进行分类。我们在三个数据集上评估PGMoCo: CIFAR-10和PolyU掌纹(图像分类)和H-MOG(人物识别)。PGMoCo在CIFAR-10、PolyU palm - print和H-MOG上的分类准确率分别达到86.76%、95.94%和80.10%,均优于现有的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信