Yantao Li;Shijun Ling;Hongyu Huang;Feno H. Rabevohitra
{"title":"Progressive Growth-Based Momentum Contrast for Unsupervised Representative Learning in Classification Tasks","authors":"Yantao Li;Shijun Ling;Hongyu Huang;Feno H. Rabevohitra","doi":"10.1109/LNET.2024.3482295","DOIUrl":null,"url":null,"abstract":"Contrastive unsupervised learning has made significant progress, but there is still potential for improvement by capturing finer details in input data. In this letter, we present PGMoCo, a Progressive Growth-based Momentum Contrast framework for unsupervised representative learning in classification tasks. PGMoCo begins by learning the overall distribution of samples at a coarse scale and progressively refines the representation by incorporating increasingly finer details. PGMoCo consists of data augmentation, progressive growth, an alternative multilayer perceptron (MLP) head, and a loss function. First, PGMoCo applies transformation-based data augmentation to the input samples. Then, it progressively learns features at multiple scales, uses an alternative MLP head to project latent representations into a contrastive loss space, and finally employs a specialized loss function to classify the samples. We evaluate PGMoCo on three datasets: CIFAR-10 and PolyU Palmprint (image classification) and H-MOG (person identification). PGMoCo achieves classification accuracies of 86.76% on CIFAR-10, 95.94% on PolyU Palmprint, and 80.10% on H-MOG, outperforming existing state-of-the-art methods.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 1","pages":"31-35"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10720887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Contrastive unsupervised learning has made significant progress, but there is still potential for improvement by capturing finer details in input data. In this letter, we present PGMoCo, a Progressive Growth-based Momentum Contrast framework for unsupervised representative learning in classification tasks. PGMoCo begins by learning the overall distribution of samples at a coarse scale and progressively refines the representation by incorporating increasingly finer details. PGMoCo consists of data augmentation, progressive growth, an alternative multilayer perceptron (MLP) head, and a loss function. First, PGMoCo applies transformation-based data augmentation to the input samples. Then, it progressively learns features at multiple scales, uses an alternative MLP head to project latent representations into a contrastive loss space, and finally employs a specialized loss function to classify the samples. We evaluate PGMoCo on three datasets: CIFAR-10 and PolyU Palmprint (image classification) and H-MOG (person identification). PGMoCo achieves classification accuracies of 86.76% on CIFAR-10, 95.94% on PolyU Palmprint, and 80.10% on H-MOG, outperforming existing state-of-the-art methods.