{"title":"LEMON: A Knowledge-Enhanced, Type-Constrained, and Grammar-Guided Model for Question Generation Over Knowledge Graphs","authors":"Sheng Bi;Zeyi Miao;Qizhi Min","doi":"10.1109/TLT.2025.3544454","DOIUrl":null,"url":null,"abstract":"The objective of question generation from knowledge graphs (KGQG) is to create coherent and answerable questions from a given subgraph and a specified answer entity. KGQG has garnered significant attention due to its pivotal role in enhancing online education. Encoder–decoder architectures have advanced traditional KGQG approaches. However, these approaches encounter challenges in achieving question diversity and grammatical accuracy. They often suffer from a disconnect between the phrasing of the question and the type of the answer entity, a phenomenon known as semantic drift. To address these challenges, we introduce LEMON, a knowledge-enhanced, type-constrained, and grammar-guided model for KGQG. LEMON enhances the input by integrating entity-related knowledge using heuristic rules, which fosters diversity in question generation. It employs a hierarchical global relation embedding with translation loss to align questions with entity types. In addition, it utilizes a graph-based module to aggregate type information from neighboring nodes. The LEMON model incorporates a type-constrained decoder to generate diverse expressions and improves grammatical accuracy through a syntactic and semantic reward function via reinforcement learning. Evaluations on benchmark datasets demonstrate LEMON's strong competitiveness. The study also examines the impact of question generation quality on question-answering systems, providing guidance for future research endeavors in this domain.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"18 ","pages":"256-272"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10897838/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of question generation from knowledge graphs (KGQG) is to create coherent and answerable questions from a given subgraph and a specified answer entity. KGQG has garnered significant attention due to its pivotal role in enhancing online education. Encoder–decoder architectures have advanced traditional KGQG approaches. However, these approaches encounter challenges in achieving question diversity and grammatical accuracy. They often suffer from a disconnect between the phrasing of the question and the type of the answer entity, a phenomenon known as semantic drift. To address these challenges, we introduce LEMON, a knowledge-enhanced, type-constrained, and grammar-guided model for KGQG. LEMON enhances the input by integrating entity-related knowledge using heuristic rules, which fosters diversity in question generation. It employs a hierarchical global relation embedding with translation loss to align questions with entity types. In addition, it utilizes a graph-based module to aggregate type information from neighboring nodes. The LEMON model incorporates a type-constrained decoder to generate diverse expressions and improves grammatical accuracy through a syntactic and semantic reward function via reinforcement learning. Evaluations on benchmark datasets demonstrate LEMON's strong competitiveness. The study also examines the impact of question generation quality on question-answering systems, providing guidance for future research endeavors in this domain.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.