A novel architecture for automated delineation of the agricultural fields using partial training data in remote sensing images

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Sumesh KC , Jagannath Aryal , Dongryeol Ryu
{"title":"A novel architecture for automated delineation of the agricultural fields using partial training data in remote sensing images","authors":"Sumesh KC ,&nbsp;Jagannath Aryal ,&nbsp;Dongryeol Ryu","doi":"10.1016/j.compag.2025.110265","DOIUrl":null,"url":null,"abstract":"<div><div>Digital agricultural services (DAS) rely on timely and accurate spatial information of agricultural fields. Initiatives, including deep learning (DL), have been used to extract accurate spatial information using remote sensing images. However, DL approaches require a large amount of fully segmented and labelled field boundary data for training that is not readily available. Obtaining high-quality training data is often costly and time-consuming. To address this challenge, we develop a multi-scale, multi-task DL-based novel architecture with two modules, an edge enhancement block (EEB) and a spatial attention block (SAB), using partial training data (i.e., weak supervision). This architecture is capable of delineating narrow and weak boundaries of agricultural fields. The model simultaneously learns three tasks: boundary prediction, extent prediction and distance estimation, and enhances the generalisability of the network. The EEB module extracts semantic edge features at multiple levels. The SAB module integrates the features from the encoder and decoder to improve the geometric accuracy of field boundary delineation. We conduct an experiment in Ille-et-Vilaine, France, using time-series monthly composite images from Sentinel-2 to capture key phenological stages of crops. The segmentation output from different months is combined and post-processed to generate individual field instances using hierarchical watershed segmentation. The performance of our method is superior in both pixel-based (86.42% Matthew’s correlation coefficient (MCC)) and object-based accuracy measures (76% shape similarity and 60% intersection over union (IoU)) to existing multi-task models. The ablation study shows that the EEB and SAB modules enhance the efficiency of feature extraction relevant to field extent and boundaries and improve accuracy. We conclude that the developed model and method can be used to improve the extraction of agricultural fields under weak supervision and different settings (satellite sensors and agricultural landscape).</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"234 ","pages":"Article 110265"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925003710","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Digital agricultural services (DAS) rely on timely and accurate spatial information of agricultural fields. Initiatives, including deep learning (DL), have been used to extract accurate spatial information using remote sensing images. However, DL approaches require a large amount of fully segmented and labelled field boundary data for training that is not readily available. Obtaining high-quality training data is often costly and time-consuming. To address this challenge, we develop a multi-scale, multi-task DL-based novel architecture with two modules, an edge enhancement block (EEB) and a spatial attention block (SAB), using partial training data (i.e., weak supervision). This architecture is capable of delineating narrow and weak boundaries of agricultural fields. The model simultaneously learns three tasks: boundary prediction, extent prediction and distance estimation, and enhances the generalisability of the network. The EEB module extracts semantic edge features at multiple levels. The SAB module integrates the features from the encoder and decoder to improve the geometric accuracy of field boundary delineation. We conduct an experiment in Ille-et-Vilaine, France, using time-series monthly composite images from Sentinel-2 to capture key phenological stages of crops. The segmentation output from different months is combined and post-processed to generate individual field instances using hierarchical watershed segmentation. The performance of our method is superior in both pixel-based (86.42% Matthew’s correlation coefficient (MCC)) and object-based accuracy measures (76% shape similarity and 60% intersection over union (IoU)) to existing multi-task models. The ablation study shows that the EEB and SAB modules enhance the efficiency of feature extraction relevant to field extent and boundaries and improve accuracy. We conclude that the developed model and method can be used to improve the extraction of agricultural fields under weak supervision and different settings (satellite sensors and agricultural landscape).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信