Thermophysical and microstructural characterization of Ti-6Al-4V in powder and laser powder bed fusion-processed state within the global temperature field range
IF 7.6 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
J. Rottler , T.K. Tetzlaff , A. Wohninsland , A. Lion , M. Johlitz
{"title":"Thermophysical and microstructural characterization of Ti-6Al-4V in powder and laser powder bed fusion-processed state within the global temperature field range","authors":"J. Rottler , T.K. Tetzlaff , A. Wohninsland , A. Lion , M. Johlitz","doi":"10.1016/j.matdes.2025.113823","DOIUrl":null,"url":null,"abstract":"<div><div>To pave the way for thermophysical modeling and further PBF-LB/M process optimization, the thermophysical properties of Ti-6Al-4V in powder and processed states were investigated using thermo-mechanical analysis, laser flash analysis, and differential scanning calorimetry. Microstructural characterization using SEM, Vickers hardness testing, and XRD facilitated a novel interpretation of the results. The macroscopic density exhibited a linear relationship up to 880<!--> <span><math><mmultiscripts><mrow><mi>C</mi></mrow><mprescripts></mprescripts><none></none><mrow><mo>∘</mo></mrow></mmultiscripts></math></span>, showing only a minor impact from microstructural effects. The evolution of <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> martensitic microstructure was analyzed by examining linear thermal expansion coefficients indicating direction dependency. During heating, the precipitation and stabilization of <em>β</em> provoke the formation and decomposition of the intermetallic phase, accompanied by a significant increase in hardness and an exothermic event. Additionally, the relaxation of residual stresses and transformation into the <em>β</em> phase determines the microstructural evolution. Thermal diffusivity of as-built Ti-6Al-4V propagates linearly up to 950<!--> <span><math><mmultiscripts><mrow><mi>C</mi></mrow><mprescripts></mprescripts><none></none><mrow><mo>∘</mo></mrow></mmultiscripts></math></span>. For powder, HotDisk measurements corroborate laser flash data obtained up to 850<!--> <span><math><mmultiscripts><mrow><mi>C</mi></mrow><mprescripts></mprescripts><none></none><mrow><mo>∘</mo></mrow></mmultiscripts></math></span>. Based on the LFA, the start of sintering is identified and attributed to a change in the heat transfer mechanism in AM powders. Specific heat capacity and effective thermal conductivity of AM Ti-6Al-4V are determined, highlighting the shortcomings of predicting AM powders' conductivity based on solid materials.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"253 ","pages":"Article 113823"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525002436","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To pave the way for thermophysical modeling and further PBF-LB/M process optimization, the thermophysical properties of Ti-6Al-4V in powder and processed states were investigated using thermo-mechanical analysis, laser flash analysis, and differential scanning calorimetry. Microstructural characterization using SEM, Vickers hardness testing, and XRD facilitated a novel interpretation of the results. The macroscopic density exhibited a linear relationship up to 880 , showing only a minor impact from microstructural effects. The evolution of martensitic microstructure was analyzed by examining linear thermal expansion coefficients indicating direction dependency. During heating, the precipitation and stabilization of β provoke the formation and decomposition of the intermetallic phase, accompanied by a significant increase in hardness and an exothermic event. Additionally, the relaxation of residual stresses and transformation into the β phase determines the microstructural evolution. Thermal diffusivity of as-built Ti-6Al-4V propagates linearly up to 950 . For powder, HotDisk measurements corroborate laser flash data obtained up to 850 . Based on the LFA, the start of sintering is identified and attributed to a change in the heat transfer mechanism in AM powders. Specific heat capacity and effective thermal conductivity of AM Ti-6Al-4V are determined, highlighting the shortcomings of predicting AM powders' conductivity based on solid materials.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.