Chin Chi Hsu , Tien-Li Chang , Yen-Cheng Chang , Chien-Ping Wang
{"title":"Enhancing boiling heat transfer by ultrafast laser texturing of groove structures on thin-film graphene surfaces","authors":"Chin Chi Hsu , Tien-Li Chang , Yen-Cheng Chang , Chien-Ping Wang","doi":"10.1016/j.tsep.2025.103510","DOIUrl":null,"url":null,"abstract":"<div><div>In the microelectronics industry, efficient high heat flux removal is increasingly important and can be achieved by enhancing the wettability of boiling surfaces. The heat dissipation performance of boiling heat transfer is determined by two key indicators: increasing heat flux and improving the heat transfer coefficient. This study employed a simple and efficient method to pattern screen-printed thin-film graphene surfaces, aiming to optimize both heat flux and heat transfer coefficient. The boiling surfaces were modified using ultrafast picosecond laser texturing. Results demonstrated that the improvement in boiling heat transfer was directly proportional to the groove widths created by laser texturing on the thin-film graphene surfaces. The laser texturing surface of G4 exhibited the highest heat transfer coefficient with a value of 63 kW/m<sup>2</sup> K, representing an enhancement of 135 %. Therefore, ultrafast laser texturing on thin-film graphene surfaces can be significantly enhanced through a straightforward and rapid method, making it a promising substrate for industrial applications to enhance boiling heat transfer.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"61 ","pages":"Article 103510"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904925003002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In the microelectronics industry, efficient high heat flux removal is increasingly important and can be achieved by enhancing the wettability of boiling surfaces. The heat dissipation performance of boiling heat transfer is determined by two key indicators: increasing heat flux and improving the heat transfer coefficient. This study employed a simple and efficient method to pattern screen-printed thin-film graphene surfaces, aiming to optimize both heat flux and heat transfer coefficient. The boiling surfaces were modified using ultrafast picosecond laser texturing. Results demonstrated that the improvement in boiling heat transfer was directly proportional to the groove widths created by laser texturing on the thin-film graphene surfaces. The laser texturing surface of G4 exhibited the highest heat transfer coefficient with a value of 63 kW/m2 K, representing an enhancement of 135 %. Therefore, ultrafast laser texturing on thin-film graphene surfaces can be significantly enhanced through a straightforward and rapid method, making it a promising substrate for industrial applications to enhance boiling heat transfer.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.