Radiation-synthesis of covalent bonding heterojunctions for selective solar-driven CO2 reduction

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weidong Hou , Huazhang Guo , Kang Wang , Tao Han , Jiye Zhang , Minghong Wu , Liang Wang
{"title":"Radiation-synthesis of covalent bonding heterojunctions for selective solar-driven CO2 reduction","authors":"Weidong Hou ,&nbsp;Huazhang Guo ,&nbsp;Kang Wang ,&nbsp;Tao Han ,&nbsp;Jiye Zhang ,&nbsp;Minghong Wu ,&nbsp;Liang Wang","doi":"10.1016/j.mattod.2025.01.016","DOIUrl":null,"url":null,"abstract":"<div><div>The low carrier concentration and sluggish internal charge migration impede the efficiency of CO<sub>2</sub> photoreduction in conventional catalysts. Herein, we present an efficient electron beam irradiation strategy to synthesize a carbon nitride/carbon quantum dots (ECN/CQD) heterojunction photocatalyst with an N-bridged covalent interface. This covalent bond at the ECN/CQD interface significantly accelerates the separation and migration of photogenerated charge carriers, resulting in a high concentration of surface charges. As a result, ECN/CQD demonstrates outstanding photocatalytic performance, with CO and CH<sub>4</sub> evolution rates of 44.5 and 0.88 μmol g<sup>−1</sup> h<sup>−1</sup>, respectively, and excellent stability across eight consecutive cycles. Additionally, in situ Kelvin probe force microscopy and electrostatic force microscopy characterizations reveal the charge distribution on the catalyst surface, providing deep insights into the enhanced charge separation capabilities of the covalent bond heterojunction. This work provides an innovative approach for developing high-performance covalent bond heterojunction photocatalysts for efficient CO<sub>2</sub> reduction.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"84 ","pages":"Pages 1-9"},"PeriodicalIF":21.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136970212500029X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The low carrier concentration and sluggish internal charge migration impede the efficiency of CO2 photoreduction in conventional catalysts. Herein, we present an efficient electron beam irradiation strategy to synthesize a carbon nitride/carbon quantum dots (ECN/CQD) heterojunction photocatalyst with an N-bridged covalent interface. This covalent bond at the ECN/CQD interface significantly accelerates the separation and migration of photogenerated charge carriers, resulting in a high concentration of surface charges. As a result, ECN/CQD demonstrates outstanding photocatalytic performance, with CO and CH4 evolution rates of 44.5 and 0.88 μmol g−1 h−1, respectively, and excellent stability across eight consecutive cycles. Additionally, in situ Kelvin probe force microscopy and electrostatic force microscopy characterizations reveal the charge distribution on the catalyst surface, providing deep insights into the enhanced charge separation capabilities of the covalent bond heterojunction. This work provides an innovative approach for developing high-performance covalent bond heterojunction photocatalysts for efficient CO2 reduction.

Abstract Image

辐射合成共价键异质结用于选择性太阳能驱动的CO2还原
传统催化剂中载流子浓度低和内电荷迁移缓慢阻碍了CO2光还原的效率。在此,我们提出了一种有效的电子束辐照策略来合成具有n桥共价界面的氮化碳/碳量子点(ECN/CQD)异质结光催化剂。ECN/CQD界面上的共价键显著加速了光生载流子的分离和迁移,导致表面电荷的高浓度。结果表明,ECN/CQD具有优异的光催化性能,CO和CH4的析出速率分别为44.5 μmol g−1 h−1和0.88 μmol g−1 h−1,并且具有良好的连续8个循环的稳定性。此外,原位开尔文探针力显微镜和静电力显微镜表征揭示了催化剂表面的电荷分布,为共价键异质结增强的电荷分离能力提供了深入的见解。本研究为开发高效CO2还原的高性能共价键异质结光催化剂提供了一条创新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信