Design an energy efficient ternary parallel prefix carry/sum propagate adders using 32-nm CNTFET

Sudha Vani Yamani , H.K. Raghu Vamsi Kudulla , B.V.R.S. Ganesh , D. Sushma , Ch Manasa , Satti Harichandra Prasad
{"title":"Design an energy efficient ternary parallel prefix carry/sum propagate adders using 32-nm CNTFET","authors":"Sudha Vani Yamani ,&nbsp;H.K. Raghu Vamsi Kudulla ,&nbsp;B.V.R.S. Ganesh ,&nbsp;D. Sushma ,&nbsp;Ch Manasa ,&nbsp;Satti Harichandra Prasad","doi":"10.1016/j.memori.2025.100129","DOIUrl":null,"url":null,"abstract":"<div><div>Every digital computer system utilizes binary adders. However, researchers have focused on ternary logic to reduce power consumption in digital systems. To implement a ternary logic circuit, Carbon Nano Tube Field Effect Transistors (CNTFETs) have been employed, as the threshold voltage (V<sub>th</sub>) of CNTFETs. Fundamentally, the carry look-ahead adders follow the parallel prefix carry propagation. In the parallel prefix adders, this propagates the carry/sum bits. The traditional Carry Propagate Adders (CPA) generate carry bits and propagate them. Their results show carry bit propagation needs time and extra circuits for carry generation, which occupies more chip area than Sum Propagation Adders (SPA). Specifically, this work explored the use of parallel prefix ternary sum/carry propagation adders with a proposed carry propagator block, which is a kind of multi-valued logic (MVL). This work utilized 32 nm CNTFETs to build the circuits. To evaluate the performance, simulations were conducted using Cadence Virtuoso Software for both the Ternary Carry Propagate Adder (TCPA) and the Ternary Sum Propagate Adder (TSPA). The results demonstrated that the 8-bit Kogge Stone TSPA exhibited a remarkable 37.3 % reduction in power consumption compared to the TCPA. Additionally, the 8-bit Kogge Stone TSPA also demonstrated a notable 45 % reduction in delay compared to the TCPA.</div></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"10 ","pages":"Article 100129"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277306462500009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Every digital computer system utilizes binary adders. However, researchers have focused on ternary logic to reduce power consumption in digital systems. To implement a ternary logic circuit, Carbon Nano Tube Field Effect Transistors (CNTFETs) have been employed, as the threshold voltage (Vth) of CNTFETs. Fundamentally, the carry look-ahead adders follow the parallel prefix carry propagation. In the parallel prefix adders, this propagates the carry/sum bits. The traditional Carry Propagate Adders (CPA) generate carry bits and propagate them. Their results show carry bit propagation needs time and extra circuits for carry generation, which occupies more chip area than Sum Propagation Adders (SPA). Specifically, this work explored the use of parallel prefix ternary sum/carry propagation adders with a proposed carry propagator block, which is a kind of multi-valued logic (MVL). This work utilized 32 nm CNTFETs to build the circuits. To evaluate the performance, simulations were conducted using Cadence Virtuoso Software for both the Ternary Carry Propagate Adder (TCPA) and the Ternary Sum Propagate Adder (TSPA). The results demonstrated that the 8-bit Kogge Stone TSPA exhibited a remarkable 37.3 % reduction in power consumption compared to the TCPA. Additionally, the 8-bit Kogge Stone TSPA also demonstrated a notable 45 % reduction in delay compared to the TCPA.
利用32nm CNTFET设计一种节能的三元并行前缀进位/和传播加法器
每个数字计算机系统都使用二进制加法器。然而,研究人员一直专注于三元逻辑,以降低数字系统的功耗。为了实现三元逻辑电路,采用碳纳米管场效应晶体管(cntfet)作为阈值电压(Vth)。基本上,进位前瞻加法器遵循并行前缀进位传播。在并行前缀加法器中,这将传播进位/和位。传统的进位传播加法器(CPA)产生进位并进行传播。结果表明,进位传输需要时间和额外的进位产生电路,比和传播加法器(SPA)占用更多的芯片面积。具体来说,本工作探讨了并行前缀三元和/进位传播加法器与进位传播块的使用,这是一种多值逻辑(MVL)。这项工作使用32纳米cntfet来构建电路。为了评估性能,使用Cadence Virtuoso软件对三进制传播加法器(TCPA)和三进制和传播加法器(TSPA)进行了仿真。结果表明,与TCPA相比,8位Kogge Stone TSPA的功耗显著降低了37.3%。此外,与TCPA相比,8位Kogge Stone TSPA还显着减少了45%的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信