{"title":"Restricted slowly growing digits for infinite iterated function systems","authors":"Gerardo González Robert , Mumtaz Hussain , Nikita Shulga , Hiroki Takahasi","doi":"10.1016/j.jmaa.2025.129478","DOIUrl":null,"url":null,"abstract":"<div><div>For an infinite iterated function system <strong>f</strong> on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> with an attractor <span><math><mi>Λ</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> and for an infinite subset <span><math><mi>D</mi><mo>⊆</mo><mi>N</mi></math></span>, consider the set<span><span><span><math><mi>E</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>D</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>Λ</mi><mo>(</mo><mi>f</mi><mo>)</mo><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>D</mi><mspace></mspace><mtext>for all</mtext><mspace></mspace><mi>n</mi><mo>∈</mo><mi>N</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>∞</mo><mo>}</mo><mo>.</mo></math></span></span></span> For a function <span><math><mi>φ</mi><mo>:</mo><mi>N</mi><mo>→</mo><mo>[</mo><mi>min</mi><mo></mo><mi>D</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> such that <span><math><mi>φ</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>→</mo><mo>∞</mo></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, we compute the Hausdorff dimension of the set<span><span><span><math><mi>S</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>φ</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>D</mi><mo>)</mo><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mi>φ</mi><mo>(</mo><mi>n</mi><mo>)</mo><mspace></mspace><mtext>for all</mtext><mspace></mspace><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We prove that the Hausdorff dimension stays the same no matter how slowly the function <em>φ</em> grows. One of the consequences of our result is the recent work of Takahasi (2023), which only dealt with regular continued fraction expansions. We further extend our result to slowly growing products of (not necessarily consecutive) digits.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129478"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002598","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For an infinite iterated function system f on with an attractor and for an infinite subset , consider the set For a function such that as , we compute the Hausdorff dimension of the set We prove that the Hausdorff dimension stays the same no matter how slowly the function φ grows. One of the consequences of our result is the recent work of Takahasi (2023), which only dealt with regular continued fraction expansions. We further extend our result to slowly growing products of (not necessarily consecutive) digits.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.